
Prolog Language
HABIB ULLAH QAMAR

MSCS (SE) MBA-HRM



Introduction
Prolog is a logic programming language associated 
with artificial intelligence and computational linguistics.

Prolog has its roots in first-order logic, a formal logic, and 
unlike many other programming languages, Prolog is 
intended primarily as a declarative programming language: 
the program logic is expressed in terms of relations, 
represented as facts and rules. 

A computation is initiated by running a query over these 
relations

https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Formal_logic
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Rule_of_inference


History 
Read from Wikipedia 



Data types
Prolog's single data type is the term. T

Terms are either atoms, numbers, variables or compound 
terms.

An atom is a general-purpose name with no inherent 
meaning. Examples of atoms include x, red, 'Taco', and 
'some atom'.

Numbers can be floats or integers. ISO standard compatible 
Prolog systems can check the Prolog flag "bounded". Most of 
the major Prolog systems support arbitrary length integer 
numbers.



Data types
Variables are denoted by a string consisting of letters, 
numbers and underscore characters, and beginning with an 
upper-case letter or underscore. 

Variables closely resemble variables in logic in that they are 
placeholders for arbitrary terms.

A compound term is composed of an atom called a "functor" 
and a number of "arguments", which are again terms. 
Compound terms are ordinarily written as a functor followed 
by a comma-separated list of argument terms, which is 
contained in parentheses. 



Data types
Special cases of compound terms:

A List is an ordered collection of terms. It is denoted by 
square brackets with the terms separated by commas or in 
the case of the empty list, []. For example, [1,2,3] or 
[red,green,blue].

Strings: A sequence of characters surrounded by quotes is 
equivalent to either a list of (numeric) character codes, a list 
of characters (atoms of length 1), or an atom depending on 
the value of the Prolog flag double_quotes. For example, "to 
be, or not to be".

ISO Prolog provides the atom/1, number/1, integer/1, and 



Prolog

 www.gprolog.org/setup-gprolog-1.4.5-msvc-x64.exe

 Save your programs in “Prolog workspace” folder inside “Prolog” 

folder.

 Open Prolog console. Goto File → Change Dir.

 Goto the folder containing your prolog programs. i.e. “Prolog 

workspace”.

 Press Ok.

http://www.gprolog.org/setup-gprolog-1.4.5-msvc-x64.exe


Loading and Running the code:

 [Program_file_name].                      Loading

 Run according to your requirement.



Relations in Prolog

 Relation depicts a relationship between properties and objects.

Jhon owns a car.               Relation: Ownership.

 Relations can be rules:

Two people are brothers if

They both are males

They have same parents

They are not same.



Facts, Rules and quries:
 Fact: Properties and relationships between objects.

Jhon has phone number “111222333”

phnnum(jhon,111222333).                                                     

Can be called as a predicate or clause.

 Some rules for facts in prolog:

 Names of properties/relationships should begin with a 

lower-case letter.

 Relationship name appears as first term.

 Objects appears as comma seperated arguments in 

parenthesis.

 A period “.” must end a fact.

 An object name also begins with a lower-case letter or a 

number or can be a string of characters in qoutes.



Facts, Rules and queries:

 teaches(X,Y)

 teaches(Ali, AI)

 teaches(Ahmed, OOP)

 teaches(Aslam, DSA)

 Student(X,Y)

 Student(Bilal,DSA)

 Student(Babar,DSA)

 Student(Kamran,AI)

 Student(Akram,OOP)

 Student(Fawad,OOP)

Note: These facts form Prolog database/knowledge base.



Facts, Rules and queries:

 Rules:

 A teacher will guide students if that student studies that 

particular course taught by that teacher.

 guide(Teacher,Student):-

teaches(Teacher,Course),

student(Student,Course).

Note: Variable name start with a capital letter or an 

underscore(_).



Difference between Rule and Fact



Facts, Rules and queries:

 Queries:

 Queries will be based on facts and rules. We can ask 

questions based on stored information.

 Suppose we want to know that Ali teaches AI or not?

?- teaches(Ali,AI).

 Queries are terminated by full-stop.

 To ask this query, Prolog will consult database.

 Similarly, we can also ask:

?- teaches(Ali,X).



Facts, Rules and queries:

 Syntax of a Clause:

 :- this means “if” or “is implied by”. Also called neck 

symbol.

 Left hand side of neck is called head.

 Right hand side of neck is called body.

 , stands for AND/Conjunction.

 ; stands for OR/Disjunction.



How a Prolog program executes:



Example
 How would you represent parent child relationship?

parent(amna, ayesha).

parent(amna,ali).

parent(usama, ali).

parent(ali,ahmed).

parent(usama,ayesha).

yes

| ?- parent(amna, ali).

yes

| ?- parent(amna, ayesha).

true ? 

(16 ms) yes

| ?- parent(amna, usama).

no

| ?- parent(usma, ali).

no

| ?-



Example

 How will you Represent gender of a particular person in prolog?

female(ayesha).

male(ali).  ………….

 Another way:

gender(ayesha, female).

gender(ali, male). ……………...



Example:

 How would you define a mother relationship?

X is the mother of Y if X is parent of Y and X is a female.

mother(X,Y):-parent(X,Y), gender(X, female).

or

mother(X,Y):-parent(X,Y), female(X).



Example:

 How would you define a mother relationship?

X is the mother of Y if X is parent of Y and X is a female.

mother(X,Y):-parent(X,Y), gender(X, female).

or

mother(X,Y):-parent(X,Y), female(X).



Example:

 How would you define a sister relationship?

 Has child relationship?

Anonymous Variable???



Sample Prolog Program
 Usually contains three parts:

domain (used for declarations)

i.e.  domain

name=symbol

predicate

parent(name,name)

gender(name)

mother(name,name) n

haschild(name)

sister(name,name)

brother(name,name)

clauses

define all facts and rules.

 GNU Prolog doesn’t support these sections.



Comments

 Single-Line:

 %this is a program

 Multi-Line:

 /*this is a program

and these are comments*/



Objects



What if a query has more than one 

answers.

 On asking query Prolog will display you single answer.

After getting answer press enter to exit.

Or press ; to get all answers



Atoms
 Start with lower-case letters, may contain digits and letters.

x_1

abc

a_AB

 Atoms may be strings of special characters:

<…….>

=======>

Need to be careful while using strings of special characters 

because some strings of special characters are predefined in 

prolog for special purpose. i.e.     :-

 Strings of characters enclosed in quotes. Are usefull when we 

want an atom to start with a capital letter.

i.e.   ‘Bob’ 



Numbers

 Integers i.e. 4, 100, -8

 Normal Range (-16383 to 16383)

 Treatment of real number depends on version of prolog.

 Example: Ali has phone number ‘9489578’.



Structures

 Objects with multiple components.

 i.e. 

date(9, june, 2017)

or  d1: date(9, june, 2017)

 Note: date here is a functor.



Lists

 Collection of multiple elements:

[green, red, blue, black]

[ ]                 empty List

 List has 2 parts:

 First element: head

 Remaining elements: tail

 Can also write as:

Tail=[b, c]      List=[a|Tail]

[1,2,3] is an abbreviation for .(1, .(2, .(3,[])))



Lists

 Checking membership:

list_member(Item,[Item|R]).  

list_member(Item,[D|Tail]):-

list_member(Item,Tail).

Querying the above facts and rules:

list_member(a,[a,b,c]).

 We also have a built in function:

member(x,[a,b,c])



Lists

 Calculating length:

findlen([],X):-

X=0.

findlen([X|Tail],Count):-

findlen(Tail,Prev),

Count = Prev + 1.

 Built in way:

length([a,b,c],L)



Built In functions of list

reverse([1,2], What).
listsplit([a,b,c,d,e], A, B).
member(Element, [a, b, c]).
last([a,b,c,d,e],X).
append([],[2,3],[2,3]) .
perm([1,2,3],X).



Thanks……
HABIB ULLAH QAMAR

MSCS SE (  MBA HRM)


