Operating Systems [CS-604] Lecture No.6

Operating Systems
Lecture No. 6

Reading Material
= QOperating Systems Concepts, Chapter 4
= UNIX/Linux manual pages for thc fork () system call

Summary
= Process creation and termination
= Process management in UNIX/Linux— system calls: fork, exec, wait, exit
= Sample codes

Operations on Processes

The processes in the system execute concurrently and they must be created and deleted
dynamically thus the operating system must provide the mechanism for the creation and
deletion of processes.

Process Creation

A process may create several new processes via a create-process system call during the
course of its execution. The creating process is called a parent process while the new
processes are called the children of that process. Each of these new processes may in
turn create other processes, forming a tree of processes. Figure 6.1 shows partially the
process tree in a UNIX/Linux system.

Figure 6.1 Process tree in UNIX/Linux

In general, a process will need certain resources (such as CPU time, memory files,
I/O devices) to accomplish its task. When a process creates a sub process, also known as
a child, that sub proccss may bc able to obtain its resources directly from the operating
system or may be constrained to a subset of the resources of the parent process. The
parent may have to partition its resources among several of its children. Restricting a

35

process to a subset of the parent’s resources prevents a process from overloading the
system by creating too many sub processes.

When a process is created it obtains in addition to various physical and logical
resources, initialization data that may be passed along from the parent process to the child
process. When a process creates a new process, two possibilities exist in terms of
execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it

In order to consider these different implementations let us consider the UNIX
operating system. In UNIX its process identifier identifies a process, which is a unique
integer. A new process is created by the fork system call. The new process consists of a
copy of the address space of the parent. This mechanism allows the parent process to
communicate easily with the child process. Both processes continue execution at the
instruction after the fork call, with onc difference, the return code for the fork system
call is zero for the child process, while the process identifier of the child is returned to the
parent process.

Typically the execlp system call is used after a fork system call by one of the
two processes to replace the process’ memory space with a new program. The execlp
system call loads a binary file in memory —destroying the memory image of the program
containing the execlp system call.—and starts its execution. In this manner, the two
processes are able to communicate and then go their separate ways. The parent can then
create more children, or if it has nothing else to do while the child runs, it can issue a
wait system call to move itself off the ready queue until the termination of the child.
The parent waits for the child process to terminate, and then it resumes from the call to
wait where it completes using the exit system call.

Process termination

A process terminates when it finishes executing its final statement and asks the operating
system to delete it by calling the exit system call. At that point, the process may return
data to its parent process (via the wait system call). All the resources of the process
including physical and virtual memory, open the files and I/O buffers — are de allocated
by the operating system.

Termination occurs under additional circumstances. A process can cause the
termination of another via an appropriate system call (such as abort). Usually only the
parcnt of the process that is to be terminated can invoke this system call. Thercfore
parents need to know the identities of its children, and thus when one process creates
another process, the identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of reasons,
such as:

*» The child has exceeded its usage of some of the resources that it has bcen
allocated. This requires the parent to have a mechanism to inspect the state of its
children.

* The task assigned to the child is no longer required.

36

= The parent is exiting, and the operating system does not allow a child to continue
if its parent terminates. On such a system, if a process terminates either normally
or abnormally, then all its children must also be terminated. This phenomenon
referred to as cascading termination, is normally initiated by the operating system.
Considering an example from UNIX, we can terminate a process by using the exit
system call, its parent process may wait for the termination of a child process by using
the wait system call. The wait system call returns the process identifier of a terminated
child, so that the parent can tell which of its possibly many children has terminated. If the
parent terminates however all its children have assigned as their new parent, the init
process. Thus the children still have a parent to collect their status and execution
statistics.

The fork () system call
When the fork system call is executed, a new process is created. The original process is
called the parent process whereas the process is called the child process. The new process
consists of a copy of the address space of the parent. This mechanism allows the parent
process to communicate easily with the child process. On success, both processes
continue execution at the instruction after the £ork call, with one difference, the return
code for the fork system call is zero for the child process, while the process identifier
of the child is returned to the parent process. On failure, a -1 will be returned in the
parent's context, no child process will be created, and an error number will be set
appropriately.

The synopsis of the fork system call is as follows:
#include <sys/types.h>

#include <unistd.h>
pid t fork(void);

main ()
{
int pid;
vid = forkil;

if (pid == 0) {
/* Code for child */

}
else {
/* Code for parent */

o o 0

}

Figure 6.2 Sample code showing use of the fork () system call

Figure 6.2 shows sample code, showing the use of the fork () system call and
Figure 6.3 shows the semantics of the fork system call. As shown in Figure 6.3, fork ()

37

creates an exact memory image of the parent process and returns 0 to the child process
and the process ID of the child process to the parent process.

Parent Process | pid= 12345

pid=0

Kernel Space

Figure 6.3 Semantics of the fork system call

After the fork () system call the parent and the ¢hild share the following:
» Environment
Open file descriptor table
Signal handling settings
Nice value
Current working directory
= Root directory
= File mode creation mask (umask)
The following things are different in the parent and the child:
= Different process 1D (PID)
= Different parent process [D (PPID)
= Child has its own copy of parent’s file descriptors
The fork () system may fail due to a number of reasons. One reason maybe that the
maximum numbcr of proccsscs allowed to exccute under onc uscr has cxceeded, another
could be that the maximum number of processes allowed on the system has exceeded.
Yet another reason could be that there is not enough swap space.

38

Operating Systems [CS-604] Lecture No. 7

Operating Systems
Lecture No. 7

Reading Material
= QOperating Systems Concepts, Chapter 4
= UNIX/Linux manual pages for execlp (), exit (),and wait () systcm calls

Summary
» Theexeclp(),wait(),and exec () system calls and sample code
= Cooperating processes
= Producer-consumer problem
= Interprocess communication (IPC) and process synchronization

The wait () system call

The wait system call suspends the calling process until onc of thc immediate children
terminate, or until a child that is being traced stops because it has hit an event of interest.
The wait will return prematurely if a signal is received. If all child processes stopped or
terminated prior to the call on wait, return is immediate. If the call is successful, the
process ID of a child is returned. If the parent terminates however all its children have
assigned as their new parent, the init process. Thus the children still have a parent to
collect their status and execution statistics. The synopsis of the wait system call is as
follows:

finclude <sys/types.h>

#include <sys/wait.h>

pid t wait(int *stat loc);

A zombie process is a process that has terminated but whose exit status has not yet been
received by its parent process or by init. Sample code showing the use of fork () and
wait () system calls is given in Figure 7.1 below.

#include <stdio.h>
void main () {
int pid, status;
pid = fork();

if(pid == -1) {
printf (“fork failed\n”);
exit (1),

}
if(pid == 0) { /* Child */
printf (“Child here!\n”);
exit (0);
}
else { /* Parent */
wait (&status);

39

printf (“Well done kid!\n”);
exit (0);
}

}

Figure 7.1 Sample code showing use of the fork ()
and wait () system calls

The execlp () system call

Typically, the execlp () system call is used after a fork () system call by one of the
two processes to replace the process” memory space with a new program. The new
process image is constructed from an ordinary, executable file. This file is either an
executable object file, or a file of data for an interpreter. There can be no return from a
successful exec because the calling process image is overlaid by the new process image.
In this manner, the two processes are able to communicate and then go their separate
ways. The synopsis of the execlp () system call is given below:
#include <unistd.h>

int execlp (const char *file, const,char *argoO,

const char *argn, (char *)0);

4

Sample code showing the use of fork () and execlp () system calls is given in
Figure 7.2 below.

#include <stdio.h>
void main ()

{

int pid, status;

pid = fork();

if (pid == -1) {
printf (“fork failed\n”);
exit (1),

}

if(pid == 0) { /* Child */

if (execlp (“/bin/1ls”, “1s”, NULL)< 0) {
printf (“exec failed\n”);
exit (1) ;
}
1
else { /* Parent */
wait (&status);
printf (“Well done kid!\n”);
exit (0) ;
1
!

Figure 7.2 Sample code showing use of fork (), execlp(),wait (),and exit ()

40

The semantics of fork (), followed by an execlp() system call are shown In Figure
7.3 below.

varent parent varent
fork
Is
exec
child child child

Figure 7.3 Semantics of fork () followed by exec ()

Cooperating Processes
The concurrent processes executing in the operating system may be either independent
processes or cooperating processes. A process is independent if it cannot affect or be
affected by any other process executing in the system. Clearly any process that shares
data with other processes is a cooperating process. The advantages of cooperating
processes are:
= [Information sharing: Since several users may be interested in the same piece of
information (for instance, a shared file) we must provide an environment to allow
concurrent users to access these types of resources.
* Computation speedup: [f we want a particular task to run faster, we must break
it into subtasks each of which will be running in parallel with the others. Such a
speedup can be obtained only if the computer has multiple processing elements
(such as CPU’s or I/O channels).
* Modularity: We may want to construct the system in a modular fashion, dividing
the system functions into separate processes or threads.
= Convenience: Even an individual user may have many tasks on which to work at
one time. For instance, a user may be editing, printing, and compiling in parallel.
To illustrate the concept of communicating processes, let us consider the producer-
consumer problem. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code that is
consumed by an assembler. To allow a producer and consumer to run concurrently, we
must have available a buffer of items that can be filled by a producer and emptied by a
consumer. The producer and consumer must be synchronized so that the consumer does
not try to consume an item that has not yet been produced. The bounded buffer problem
assumes a fixed buffer size, and the consumer must wait if the buffer is empty and the
producer must wait if the buffer is full, whereas the unbounded buffer places no practical
limit on the size of the buffer. Figurc 7.4 shows the problem in a diagram. This buffer
may be provided by interprocess communication (discussed in the next section) or with
the use of shared memory.

41

Empty Pool

¢\

“

0, o 5

Full Pool

Figure 7.4 The producer-consumer problem

Figure 7.5 shows the shared buffer and other variables used by the producer and
CONSUMCT Proccsscs.

#define BUFFER SIZE 10
typedef struct
{

} item;

item buffer[BUFFER_SIZE];
int in=0;

int out=0;

Figure 7.5 Shared buffer and variables used by the producer and consumer processes

The shared buffer is implemented as a circular array with two logical pointers: in an out.
The ‘in’ variable points to the next free position in the buffer; ‘out’ points to the first full
position in the buffer. The buffer is empty when in==ocut, the buffer is full when
((in+1) $BUFFER_SIZE)==out. The code structures for the producer and consumer
processes are shown in Figure 7.6.

Producer Process
while (1) {
/*Produce an item in nextProduced*/
while (((in+1) $BUFFER_SIZE)==out); /*do nothing*/
buffer[in]=nextProduced;
in=(in+l) %BUFFER SIZE;

}

Consumer Process
while(1l) {
while (in == out); //do nothing
nextConsumed=buffer[out];
out=(out+1l) SBUFFER SIZE;
/*Consume the item in nextConsumed*/
}

Figure 7.6 Code structures for the producer and consumer processes

42

Operating Systems [CS-604] Lecture No. 8

Operating Systems
Lecture No. 8

Reading Material
= QOperating Systems Concepts, Chapter 4
» UNIX/Linux manual pages for pipe(), fork(), read(), write(),
close(),and wait () system calls

Summary
= Interprocess communication (IPC) and process synchronization
= UNIX/Linux IPC tools (pipe, named pipe—FIFO, socket, TLI, message queue,
shared memory)
= Use of UNIC/Linux pipe in a sample program

Interprocess Communication (IPC)

IPC provides a mechanism to allow processes to communicate and to synchronize their
actions without sharing the same address space. We discuss in this section the various
message passing techniques and issues related to them.

Message Passing System
The function of a message system is to allow processes to communicate without the need
to resort to the shared data. Messages sent by a process may be of either fixed or variable
size. If proccsses P and Q want to communicate, a communication link must cxist
between them and they must send messages to and receive messages from each other
through this link. Here are several methods for logically implementing a link and the send
and receive options:

» Direct or indirect communication

= Symmetric or asymmetric communication

» Automatic or explicit buffering

= Send by copy or send by reference

» Fixed size or variable size messages

We now look at the different types of message systems used for IPC.

Direct Communication
With direct communication, each process that wants to communicate must explicitly
name the recipient or sender of the communication. The send and receive primitives are
defined as:

= Send(P, message) — send a message to process P

» Receive(Q, message) — receive a message from process Q.

43

A communication link in this scheme has the following properties:
= A link is established automatically between every pair of processes that want to
communicate. The processes need to know only each other’s identity to
communicate
= A link is associated with exactly two processes.
= Exactly one link exists between each pair of processes.

Unlike this symmetric addressing scheme, a variant of this scheme employs
asymmetric addressing, in which the recipient is not required to name the sender.
= Send(P, message) — send a message to process P
= Receive(id, message) — receive a message from any process; the variable id is set
to the name of the process with which communication has taken place.

Indirect Communication
With indirect communication, messages can be sent to and received from mailboxes.
Here, two processes can communicate only if they share a mailbox. The send and receive
primitives are defined as:
= Send(A, message) — send a message to mailbox A.
* Receive(A, message) - receive a message from mailbox A.
A communication link in this scheme has the following properties:
= A link is established between a pair of processes only it both members have a
shared mailbox.
= A link is associated with more than two processes.
* A number of different links may exist between each pair of communicating
processes, with each link corresponding to one mailbox.

Synchronization
Communication between processes takes place by calls to send and receive primitives
(i.e., functions). Message passing may be either blocking or non-blocking also called as
synchronous and asynchronous.
* Blocking send: The sending process is blocked until the receiving process or the
mailbox receives the message.
= Non-blocking send: The sending process sends the message and resumes
operation,
* Blocking receive: The receiver blocks until a message is available.
= Non-blocking receiver: The receiver receives either a valid message or a null.

Buffering
Whether the communication is direct or indirect, messages exchanged by the processes
reside in a temporary queue. This queue can be implemented in three ways:
= Zero Capacity: The queue has maximum length zero, thus the link cannot have
any messages waiting in it. In this case the sender must block until the message
has been received.
= Bounded Capacity: This queue has finite length n; thus at most n messages can
reside in it If the queue is not full when a new message is sent, the later is placed
in the queue and the sender resumes operation. If the queue is full, the sender
blocks until space is available.

44

* Unbounded Capacity: The queue has infinite length; thus the sender never
blocks.

UNIX/Linux TPC Tools
UNIX and Linux operating systems provide many tools for interprocess communication,
mostly in the form of APIs but some also for use at the command line. Here are some of
the commonly supported IPC tools in the two operating systems.

= Pipe

= Named pipe (FIFO)

= BSD Socket

= TLI

= Message queue

* Shared memory

= Etc.

Overview of read (), write (), and close () System Calls

We need to understand the purpose and syntax of the read, write and close system calls so
that we may move on to understand how communication works between various Linux
processes. The read system call is used to read data from a file descriptor. The synopsis
of this system call is:

#include <unistd.h>
ssize t read(int fd, void *buf, size t count);

read () attempts to read up to count bytes from file descriptor fd into the buffer
starting at buf. If count is zero, read () returns zero and has no other results. If count
is greater than SSIZE_MAX, the result is unspecified. On success, read () returns the
number of bytes read (zero indicates end of file) and advances the file position pointer by
this number.

The write () system call is used to write to a file. Its synopsis is as follows:

#include <unistd.h>
ssize t write(int fd, const void *buf, size t count);

write () attempts to write up to count bytes to the file referenced by the file
descriptor fd from the buffer starting at buf. On success, write () returns the number
of bytes written are returned (zero indicates nothing was written) and advances the file
position pointer by this number. On error, read () returns -1, and errno is set
appropriately. If count is zcro and the file descriptor refers to a regular file, 0 will be
returned without causing any other effect.

The close () system call is used to close a file descriptor. Its synopsis is:

#include <unistd.h>
int close(int fd);

close () closcs a filec descriptor, so that it no longer refers to any file and may be
reused. It fd is the last copy of a particular file descriptor the resources associated with it
are freed; if the descriptor was the last reference to a file which has been removed using

45

unlink (2) the file is deleted. close () returns zero on success, or -1 if an error
occurred.

Pipes

A UNIX/Linux pipe can be used for IPC between related processes on a system.
Communicating processes typically have sibling or parent-child relationship. At the
command line, a pipe can be used to connect the standard output of one process to the
standard input of another. Pipes provide a method of one-way communication and for this
reason may be called half-duplex pipes.

The pipe () system call creates a pipe and returns two file descriptors, one for
rcading and sccond for writing, as shown in Figurc 8.1. The filcs associated with these
file descriptors are streams and are both opened for reading and writing. Naturally, to use
such a channel properly, one needs to form some kind of protocol in which data is sent
over the pipe. Also, if we want a two-way communication, we'll need two pipes.

£dril £dro]

pipe _ﬂ

write() read()

Figure 8.1 A UNIX/Linux pipe with a read end and a write end

The system assures us of one thing: the order in which data is written to the pipe, is
the same order as that in which data is read from the pipe. The system also assures that
data won't get lost in the middle, unless one of the processes (the sender or the receiver)
cxits prematurcly. The pipe () system call is used to crecate a rcad-writc pipc that may
later be used to communicate with a process we'll fork off. The synopsis of the system
call is:

#include <unistd.h>
int pipe (int fdI[2]);

Each array element stores a file descriptor. fd[0] is the file descriptor for the read end
of the pipe (i.e., the descriptor to be used with the read system call), whereas fd[1] is the
file descriptor for the write end of the pipe. (i.e., the descriptor to be used with the write
system call).The function returns -1 if the call fails. A pipe is a bounded buffer and the
maximum data written is PIPE_ BUF, defined in <sys/param.h> in UNIX and in
<linux/param.h> in Linux as 5120 and 4096, respectively.

Lets see an example of a two-process system in which the parent process creates a
pipe and forks a child process. The child process writes the ‘Hello, world!” message to
the pipe. The parent process reads this messages and displays it on the monitor screen.
Figure 8.2 shows the protocol for this communication and Figure 8.3 shows the
corresponding C source code.

46

parent

child

fork

Half-duplex pipe after a fork

Figure 8.2 Use of UNIX/Linux pipe by parent and child for half-duplex communication

/* Paren
pipe,
#include
finclude
#include
main ()

{

}

t creates pipe, forks a child, child writes into
and parent reads from pipe */

<stdio.h>

<sys/types.h>

<sys/wait.h>

int pipefd(2], pid, n, rc, nr, status;
char *testString = "Hello, world!\n“, buf[1024];

rc = pipe (pipefd);
if (rc < 0) {
perror ("pipe");
exit (1) ;
}
pid = fork ();
if (pid < 0) H
perror ("fork");
exit(1);
}
if (pid == 0) { /* Child’s Code */
close(pipefd([Q]);
write (pipefd[1],
close (pipefd([1]);
exit (0);

testString, strlen(testString));

}

/* Parent’s Code */

close (pipefd[1l]);

n = strlen(testString);

nr = read(pipefd[0], buf, nA);
rc = write(l, buf, nr);

wait (&status);

printf ("Good work child!\n");
return(0) ;

Figurc 8.3

Sample code showing usc of UNIX/Linux pipc for IPC between related

processes—child write the “Hello, world!” message to the parent, who reads

its and displays it on the monitor screen

47

In the given program, the parent process first creates a pipe and then forks a child
process. On successful execution, the pipe () system call creates a pipe, with its read
end descriptor stored in pipefd[0] and write end descriptor stored in pipefd[1]. We call
fork () to create a child process, and then use the fact that the memory image of the
child process is identical to the memory image of the parent process, so the pipefd[] array
is still defined the same way in both of them, and thus they both have the file descriptors
of the pipe. Further more, since the file descriptor table is also copied during the fork, the
file descriptors are still valid inside the child process. Thus, the parent and child
processes can use the pipe for one-way communication as outlined above.

48

Operating Systems [CS-604] Lecture No.9

Operating Systems
Lecture No. 9

Reading Material
= (QOperating Systems Concepts, Chapter 4
= UNIX/Linux manual pages for pipe (), fork(), read(), write(),

close(),and wait () system calls
= Lecture 9 on Virtual TV

Summary
» UNIX/Linux interprocess communication (IPC) tools and associated system calls
» UNIX/Linux standard files and kernel’s mechanism for file access
= Use of pipe in a program and at the command line

Unix/Linux IPC Tools

The UNIX and Linux operating systems provide many tools for interprocess
communication (IPC). The three most commonly used tools are:

= Pipe: Pipes are used for communication between related processes on a system, as
shown in Figure 9.1. The communicating processes are typically related by sibling or
parent-child relationship.

° Pipe

Figure 9.1 Pipes on a UNIX/Linux system

= Named pipe (FIFO): FIFOs (also known as named pipes) are used for
communication between related or unrelated processes on a UNIX/Linux system, as
shown in Figure 9.2.

49

FIFO

Figure 9.2 Pipes on a UNIX/Linux system

= BSD Socket: The BSD sockets are used for communication between related or
unrelated processes on the same system or unrelated processes on different systems,
as shown in Figure 9.3.

- Network -
Socket ~______Connection | | Socket
Computer 1 Computer 2

Figure 9.3 Sockets used for IPC between processes on different UNIX/Linux systems

The open () System call
The open () system call is used to open or create a file. Its synopsis is as follows:

finclude <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char pathname, int oflag, /* mode t mode */);

The call converts a pathname into a file descriptor (a small, non-negative integer for use
in subsequent 1/O as with read, write, etc.). When the call is successful, the file
descriptor returned will be the lowest file descriptor not currently open for the process.
This system call can also specify whether read or write will be blocking or non-blocking.
The ‘oflag’ argument specifies the purpose of opening the file and ‘mode’ specifies
permission on the file if it is to be created. ‘oflag’ value is constructed by ORing various
flags: O RDONLY, O_ WRONLY, O RDWR, O NDELAY (or O NONBLOCK),
O _APPEND, O CREAT, etc.
The open () system call can fail for many reasons, some of which are:

» Non-existent file
= Operation specified is not allowed due to file permissions

50

= Scarch not allowed on a componcnt of pathname

= User’s disk quota on the file system has been exhausted

The file descriptor returned by the open () system call is used in the read () and
write () calls for file (or pipe) I/O.

The read () system call
We discussed the read () system call in the notes for lecture 8. The call may fail for
various reasons, including the following:

= Tnvalid ‘fildes’, ‘buf’, or ‘nbyte’

= Signal caught during read

The write () system call
The call may fail for various reasons, including the following:
= Invalid argument

= File size limit for process or for system would exceed
= Disk is full

The close () system call

As discussed in the notes for lecture 8, the close() system call is used to close a file
descriptor. It takes a file (or pipe) descriptor as an argument and closes the corresponding
file (or pipe end).

Kernel Mapping of File Descriptors

Figure 9.4 shows the kernel mapping of a file descriptor to the corresponding file. The
system-wide File Table contains entries for all of the open files on the system.
UNIX/Linux allocates an inode to every (unique) file on the system to store most of the
attributes, including file’s location. On a read or write call, kernel traverses this mapping
to reach the corresponding file.

Per Process File

File Descriptor Table File Inode
Descrintor Table Table
0
; File’s
3 contents
4
OPEN_MAX —1

Figure 9.4 File descriptors and their mapping to files

51

Standard Descriptors in Unix/Linux
Three files are automatically opened by the kernel for every process for the process to
read its input from and send its output and error messages to. These files are called
standard files: standard input, standard output, and standard error. By detault, standar
d files are attached to the terminal on which a process runs. The descriptors for standard
files are known as standard file descriptors. Standard files, their descriptors, and their
default attachments are:

= Standard input: 0 (keyboard)

= Standard output: 1 (display screen)

= Standard error: 2 (display screen)

The pipe () System Call
We discussed the pipe () system call in the notes for lecture 8. The pipe () system
call fails for many reasons, including the following:
= At least two slots are not empty in the PPFDT—too many files or pipes are open
in the process
= Buffer space not available in the kernel
= File table is full

Sample Code for IPC with a UNIX/Linux Pipe

We discussed in the notes for lecture 8 a simple protocol for communication between a
parent and its child process using a pipe. Figure 9.5 shows the protocol. Code is
reproduced in Figure 9.6.

. child
Write to parent
screen fork
P P
Read Write
end () end

Figure 9.5 IPC between parent and child processes with a UNIX/Linux pipe

/* Parent creates pipe, forks a child, child writes into
pipe, and parent reads from pipe */
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
main ()
{
int pipefd(2], pid, n, rc, nr, status;
char *testString = "Hello, world!\n“, buf[1024];

rc = pipe (pipefd);
if (rec < 0) {
perror ("pipe");

52

exit (1) ;
}
pid = fork ();
if (pid < 0) {
perror ("fork") ;
exit(1);
}
if (pid == 0) { /* Child’s Code */
close (pipefd([Q]);
write(pipefd[1], testString, strlen(testString));
close (pipefd[1]);
exit (0);
}
/* Parent’s Code */
close (pipefd[1l]);
n = strlen(testString);
nr = read(pipefd[0], buf, nA);
rc = write(l, buf, nr);
wait (&status) ;
printf ("Good work child!\n");
return(0) ;

}

Figure 9.6 Sample code showing use of UNIX/Linux pipe for IPC between related
processes—child write the “Hello, world!” message to the parent, who reads
its and displays it on the monitor screen

Command Line Use of UNIX/Linux Pipes

Pipes can also be used on the command line to connect the standard input of one process
to the standard input of another. This is done by using the pipe operator which is | and the
syntax is as follows:

cmdl | ecmd2 | ... | cmdN

The scmantics of this command linc arc shown in Figure 9.7.

pipe - cmd2 pipe +—p» ... —p pipe
@ IR @

Figure 9.7 Semantics of the command line that connects cmd1 through cmdN via pipes.

The following example shows the use of the pipe operator in a shell command.

cat /etc/passwd | grep zaheer

The effect of this command is that grep command displays lines in the /etc/passwd
file that contain the string “zaheer”. Figure 9.8 illustrates the semantics of this command.

53

| Display

cat) -)
S | Screen

Figure 9.8 Semantics of the cat /etc/passwd | grep zaheer command

The work performed by the above command can be performed by the following
sequence of commands without using the pipe operator. The first command saves the
/etc/passwd file in the temp! file and the second command displays those lines in temp1
which contain the string “zaheer”. After the temp1 file has been used for the desired
work, it is deleted.

$ cat /etc/passwd > templ

$ grep “zaheer” templ
$ rm templ

54

Operating Systems Lecture No. 10

Operating Systems
Lecture No. 10

Reading Material
= UNIX/Linux manual pages for the mknod () system call, the mkfifo () library
call, and the mk£1ifo command
= Lecture 10 on Virtual TV

Summary
* Input, output, and error redirection in UNIX/Linux
* FIFOs in UNIX/Linux
= Use of FIFOs in a program and at the command line

Input, output and error redirection in UNIX/Linux

Linux redirection features can be used to detach the default files from stdin, stdout, and
stderr and attach other files with them for a single execution of a command. The act of
detaching defaults files from stdin, stdout, and stderr and attaching other files with them
is known as input, output, and error redirection. In this section, we show the syntax,
semantics, and examples of I/O and error redirection.

Input Redirection: Hcre is the syntax for input redirection:
command < input-file

or
command 0< input-file

With this command syntax, keyboard is detached from stdin of ‘command’ and ‘input-
file’ is attached to it, i.e., ‘command’ reads input from ‘input-file’ and not keyboard. Note
that 0< operator cannot be used with the C and TC shells. Here is an example use of input
redirection. In these examples, the cat and grep commands read input from the Phones
file and not from keyboard.

cat < Phones

contents of Phones]
grep “Nauman” < Phones
output of grep |

U/ D/ A

Output Redirection: Here is the syntax for output redirection:

command > output-file
or
command 1> output-file

55

With this command syntax, the display screen is detached from stdout and ‘output-file’ is
attached to it, i.e., ‘command’ sends output to ‘output-file’ and not the display screen.
Note that 1> operator cannot be used with the C and TC shells. Here is an example use of
input redirection. In these examples, the cat, grep, and find commands send their
outputs to the Phones, Ali.Phones, and foo.log files, respectively, and not to the display
screen.

$ cat > Phones

[your input]

<Ctrl-D>

$ grep “Ali” Phones > Ali.phones

[output of grep |

$ find ~ -name foo -print > foo.log
[error messages]

$

Error Redirection: Here is the syntax for error redirection:
command 2> error-file

With this command syntax, the display screen is detached from stderr and ‘error-file’ is
attachced to it, i.c., crror messages arc scnt to ‘crror-file’ and not the display screen. Note
that 2> cannot be used under C and TC shells. The following are a few examples of error
redirection. In these examples, the first £ ind command sends its error messages to the
errors file and the second £ind command sends its error messages to the /dev/null file.
The 1s command sends its error messages to the error.log file and not to the display
screen.

find ~ -name foo -print 2> errors
output of the find command]

ls -1 foo 2> error.log

output of the find command]

cat error.log

s: foo: No such file or directory

$ find / -name 1ls =-print 2> /dev/null
/bin/ls

$

= U — U — A

UNIX/Linux FIFOs

A named pipe (also called a named FIFO, or just FIFO) is a pipe whose access point is a
file kept on the file system. By opening this file for reading, a process gets access to the
FIFO for reading. By opening the file for writing, the process gets access to the FIFO for
writing. By default, a FIFO is opened for blocking I/O. This means that a process reading
from a FIFO blocks until another process writes some data in the FIFO. The same goes
the other way around. Unnamed pipes can only be used between processes that have an
ancestral relationship. And they are temporary; they need to be created every time and are
destroyed when the corresponding processes exit. Named pipes (FIFOs) overcome both
of thesc limitations. Figurc 10.1 shows two unrclated proccsses, P1 and P2,
communicating with each other using a FIFO.

56

a >

FIFO

Figure 10.1 Communication between two related or unrelated processes on the same
UNIX/Linux machine

Named pipes are created via the mknod () system call or mkfifo () C library call
or by the mkfifo command. Here is the synopsis of the mknod() system call.

#include <sys/types.h>
#include <sys/stat.h>
int mknod (const char *path, mode t mode, dev t dev);

The mknod () call is normally used for creating special (i.e., device) files but it can be
used to create FIFOs too. The ‘mode” argument should be permission mode OR-ed with
S_TFIFO and ‘dev’ is set to O for creating a FIFO. As is the case with all system calls in
UNIX/Linux, mknod () returns —1 on failure and errno is set accordingly. Some of the
reasons for this call to fail are:

= File with the given name exists

= Pathname too long

= A component in the pathname not searchable, non-existent, or non-directory

= Destination directory is read-only

= Not enough memory space available

= Signal caught during the execution of mknod ()

Here is the synopsis of the mkfifo () library call.

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo (const char *path, mode t mode)

The argument path is for the name and path of the FIFO created, where was the argument
mode is for specifying the file permissions for the FIFO. The specification of the mode
argument for this function is the same as for the open (). Once we have created a FIFO
using mkfifo (), we open it using open (). In fact, the normal file I/O system calls
(close (), read(), write(), unlink (), etc.) all works with FIFOs. Since
mkfifo () invokes the mknod () system call, the reasons for its failure are pretty much
the same as for the mknod () call given above.

57

Unlike a pipe, a FIFO must be opened before using it for communication. A write to a
FIFO that no process has opened for reading results in a SIGPIPE signal. When the last
process to write to a FIFO closes it, an EOF is sent to the reader. Multiple processes can
write to a FIFO are atomic writes to prevent interleaving of multiple writes.

Two common uses of FIFOs are:

= In client-server applications, FIFOs are used to pass data between a server process

and client processes

= Used by shell commands to pass data from one shell pipeline to another, without

creating temporary files

In client-server software designed for use on the same machine, the server process
creates a “well-known” FIFO. Clients communicate send their requests to the server
process via the well-known FIFO. Server sends its response to a client via the client-
specific FIFO that each client creates and informs the server process about it. Figure 10.2
shows the diagrammatic view of such a software model.

Send repl
Send reply AarePly

read request

Read response Read response

client-1 client-K

Send request
Figure 10.2 Use of FIFOs to implement client-server software on a UNIX/Linux
machine

On the command line, mkf1fo may be used as shown in the following session. As
shown in Figurc 10.3, the scmantics of this scssion arc that progl rcads its inputs from
infile and its output is sent to prog2 and prog3.

$ mkfifo fifol
$ prog3 < fifol &
$ progl < infile | tee fifol | prog2

[Output]
$
Figure 10.3 Semantics of the above shell session

58

In the following session, we demonstrate the command line use of FIFOs. The
semantics of this session are shown in Figure 10.4. The output of the second command
line is the number of lines in the Is.dat file containing Is (i.e., the number of lines in the
manual page of the 1 s command containing the string ls) and the output of the third
command line is the number of lines in the Is.dat file (i.e., the number of lines in the
manual page for the 1s command).

$ man ls > ls.dat
$ cat < fifol | grep 1ls | wec -1 &
[1] 21108
$ sort < ls.dat | tee fifol | wec -1
31
528

o | o e

Figure 10.4 Pictorial representation of the semantics of the above shell session

59

Operating Systems [CS-604] Lecture No.11

Operating Systems
Lecture No. 11

Reading Material
= UNIX/Linux manual pages for the mknod () system call, the mkfifo () library
call, and the mkfifo, ps, and top commands
= Lecture 11 on Virtual TV

Summary
= More on the use of FIFOs in a program
= Example code for a client-server model
= A few UNIX/Linux process management commands

Use of FIFOs

We continue to discuss the API for using FIFOs for [PC between UNIX/Linux processes.
We call these processes client and server. The server process creates two FIFOs, FIFOI
and FIFO2, and opens FIFO1 for reading and FIFO2 for writing. The client process opens
FIFOL1 for writing and FIFO2 for reading. The client process writes a message to the
server process and waits for a response from the server process. The server process reads
the message sent by the client process and displays it on the monitor screen. It then sends
a message to the client through FIFO2, which the client reads and displays on the monitor
screen. The scerver process then closcs the two FIFOs and terminates. The client, after
displaying server’s message, deletes the two FIFOs and terminates. The protocol for the
client-server interaction is shown in Figure 10.1.

FIFO1

FIFO2 A

> <

Display Screen

Figure 10.1 Client-server communication using UNIX/Linux FIFOs

The codes for the server and client processes arc shown in Figurce 10.2 and Figure
10.3, respectively.

60

finclude <stdio.h>
#include <string.h>
#include <sys/types.h>
finclude <sys/stat.h>
#include <sys/errno.h>

extern int errno;

fdefine FIFOlL "/tmp/fifo.l"

#define FIFO2 "/tmp/fifo.2"

#define PERMS 0666

#define MESSAGEL "Hello, world!\n"
#define MESSAGE?2 "Hello, class!\n"
#include "fifo.h"“

main ()

{

char buff [BUFSIZ];
int readfd, writefd;
int n, size;

if ((mknod (FIFO1, S _IFIFO | PERMS, 0) < 0)
&& (errno != EEXIST)) {

perror ("mknod FIFOLl");
exit (1);

t

if (mkfifo (FIFOZ2, PERMS) < 0) {
unlink (FIFO1);
perror ("mknod FIFO2");
exit (1);

1

if ((readfd = open(FIFOl, 0)) < 0) {
perror ("open FIFO1");
exit (1);

}

if ((writefd = open(FIFO2, 1)) < 0) {
perror ("open FIFO2"):;
exit (1):

h

size = strlen (MESSAGEl) + 1;

if ((n = read(readfd, buff, size)) < 0) {
perror ("server read"); exit (1);

t

if (write (1, buff, n) < n) {
perror ("server writel"); exit (1);

t

size = strlen (MESSAGE2) + 1;

if (write (writefd, MESSAGE2, size) != size)
perror ("server write2"); exit (1);

}

close (readfd); close (writefd);

{

Figure 10.2 Code for the server process

61

#include "fifo.h"
main ()
{
char buff[BUFSIZ];
int readfd, writefd, n, size;

if ((writefd = open(FIFO1l, 1)) < 0) {
perror ("client open FIFO1"); exit (1);
}
if ((readfd = open (FIF02, 0)) < 0) {
perror ("client open FIFO2"); exit (1);
}
size = strlen (MESSAGEl) + 1;
if (write(writefd, MESSAGEl, size) != size) {
perror ("client writel"); exit (1);
t
if ((n = read(readfd, buff, size)) < 0) {
perror ("client read"); exit (1);
t
else
if (write(l, buff, n) !'= n) {
perror ("client write2"); exit (1);
}
close (readfd); close(writefd);
/* Remove FIFOs now that we are done using them */
if (unlink (FIFO1l) < 0) {
perror ("client unlink FIFO1"™);
exit (1);
}
if (unlink (FIFO2) < 0) {
perror ("client unlink FIFO2");
exit (1);
}
exit (0);

Figure 10.3 Code for the client process

In the session shown in Figure 10.4, we show how to compile and run the client-
server software. We run the server process first so it could create the two FIFOs to be
used for communication between the two processes. Note that the server process is run in
the background by terminating its command line with an ampersand (&).

$ gee server.c —o server
$ gee client.c —o client
$./server &

[1] 432056

$./client

Hello, world!

Hello, class!

$

Figurc 10.4 Compilation and cxccution of the client-server softwarc

62

UNIX/Linux Command for Process Management
We now discuss some of the UNIX/Linux commands for process management, including
ps and top. More commands will be discussed in lecture 12.

ps — Display status of processes
ps gives a snapshot of the current processes. Without options, ps prints information
about processes owned by the user. Some of the commonly used options are —u, —e, and
-1.

= —e selects all processes

= -1 formats the output in the long format

= —u displays the information in user-oriented format

The shell session in Figure 10.5 shows sample use of the ps command. The first
command shows thc processcs running in your current scssion. The sccond command
shows, page by page, the status of all the processes belonging to root. The last command
shows the status of all the processes running on your system.

$ ps
PID TTY TIME CMD
1321 pts/0 00:00:00 csh
1345 pts/0 00:00:00 bash
1346 pts/0 00:00:00 ps
$ ps =-u root | more
PID TTY TIME CMD
17 00:00:04 init
57 00:00:01 kswapd
712 7 00:00:00 inetd
799 2 00:00:00 cron
864 7 00:00:00 sshd
934 2 00:00:00 httpd
1029 ttyl 00:00:00 getty

$ ps -e | more

PID TTY TIME CMD

1 00:00:04 init

00:00:00 keventd
00:00:00 ksoftirqgd CPUO
00:00:00 ksoftirqgd CPUL
00:00:01 kswapd
00:00:00 kreclaimd
00:00:00 bdflush
00:00:00 kupdated

L A N S A S A AV LIV

O 30 O W

é..

Figure 10.5 Use of the ps command

63

top — Display CPU usage of processes

top displays information about the top processes (as many as can fit on the terminal or
around 20 by default) on the system and periodically updates this information. Raw CPU
percentage is used to rank the processes. A sample run of the top command is shown in
Figure 10.6. The output of the command also shows the current time, how long the
system has been up and running, number of processes running on the system and their
status, number of CPUs in the system and their usage, amount of main memory in the
system and its usage, and the size of swap space and its usage. The output also shows a
lot of information about each process, including process 1D, owner’s login name, priority,
nice value, and size. Information about processes is updated periodically. See the manual
page for the top command for more information by using the man top command.

$ top

9:42am up 5:15, 2 users, load average: 0.00, 0.00, 0.00
55 processes: 54 sleeping, 1 running, 0 zombie, 0 stopped
CPUO states: 0.0% user, 0.1% system, 0.0% nice, 99.45%5 idle
CPU1l states: 0.0% user, 0.2% system, 0.0% nice, 99.3% idle

Mem: 513376K av, 237732K used, 275644K free, 60K shrd, 17944K buff
Swap: 257032K av, 0K used, 257032K free 106960K cached
PID USER PRI NI SIZE RSS SHARE STAT $CPU $SMEM TIME COMMAND
1406 sarwar 19 0 896 896 700 R 0.3 0.1 0:00 top
1382 nobody 10 0 832 832 660 S 0.1 0.1 0:00 in.telnetd
1 root 9 0 536 536 460 S 0.0 0.1 0:04 init
2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
$

Figure 10.6 Use of the top command

64

Operating Systems [CS-604] Lecture No. 12

Operating Systems
Lecture No. 12

Reading Material
= UNIX/Linux manual pages for fg, bg, jobs, and ki11 commands
= Chapter 5 of the textbook
= Lecture 12 on Virtual TV

Summary
* Process Management commands and key presses: £g, bg, jobs,and kill
commands and <Ctr1-2>and <Ctr1-C> command presses
= Thread Concept (thread, states, attributes, etc)

Process Management commands

In the last lecture, we started discussing a few UNIX/Linux process management
command. In particular, we discussed the ps and top commands. We now discuss the
fg, bg, jobs, and ki1l commands and <Ctr1-7> and <Ctr1-C> key presses.

Moving a process into foreground

You can usc the £g command to resumc the exccution of a suspended job in the
foreground or move a background job into the foreground. Here is the syntax of the
command.

fg [%job id]

where, job_id is the job 1D (not process 1D) of the suspended or background process. If
%job_id is omitted, the current job is assumed.

Moving a process into background
You can use the bg command to put the current or a suspended process into the
background. Here is the syntax of the command.

bg [$job id]

If %job_id is omitted the current job is assumed.

Displaying status of jobs (background and suspended processes)
You can use the jobs command to display the status of suspended and background
processes.

Suspending a process

You can suspend a foreground process by pressing <Ctr1-2z>, which sends a
STOP/SUSPEND signal to the process. The shell displays a message saying that the job
has been suspended and displays its prompt. You can then manipulate the state of this

65

job, put it in the background with the bg command, run some other commands, and then
eventually bring the job back into the foreground with the fg command.

The following session shows the use of the above commands. The <Ctrl1-7z>
command is used to suspend the £ind command and the bg command puts it in the
background. We then use the jobs command to display the status of jobs (i.e., the
background or suspended processes). In our case, the only job is the find command that
we explicitly put in the background with the <Ctr1-7Z> and bg commands.

$ find / -name foo -print 2> /dev/null

~Z

[11+ Stopped find / -name foo -print 2> /dev/null

$ bg

[1]+ find / -name foo -print 2> /dev/null &

$ Jjobs

[1]1+ Running find / -name foo -print 2> /dev/null &
S fg

find / -name foo -print 2> /dev/null

[command output]

$

Terminating a process

You can terminate a foreground process by pressing <Ctr1-C>. Recall that this key
press sends the SIGINT signal to the process and the default action is termination of the
process. Of course, if your foreground process intercepts SIGINT and ignores it, you
cannot terminate it with <Ctr1-C>. In the following session, we terminate the find
command with <Ctrl1-C>.

$ find / -name foo -print 1> out 2> /dev/null
~C
$

You can also terminate a process with the kill command. When executed, this
command scnds a signal to the process whosc process 1D is specificd in the command
line. Here is the syntax of the command.

kill [-signal] PID

where, ‘signal’ is the signal number and PID is the process ID of the process to whom the
specified signal is to be sent. For example, ki11 -2 1234 command sends signal
number 2 (which is also called SIGINT) to the process with ID 1234. The default action
for a signal is termination of the process identified in the command line. When executed
without a signal number, the command sends the SIGTERM signal to the process. A
process that has been coded to intercept and ignore a signal, can be terminated by sending
it the “sure kill” signal, SIGKILL, whose signal number is 9, asin ki1l -9 1234.

You can display all of the signals supported by your system, along with their
numbers, by using the ki11 -1 command. On some systems, the signal numbers are
not displayed. Here is a sample run of the command on Solaris 2.

66

$ kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) STIGUSRL
$
The Thread Concept

There are two main issues with processes:

1. The fork () system call is expensive (it requires memory to memory copy of the
executable image of the calling process and allocation of kernel resources to the
child process)

2. An inter-process communication channel (IPC) is required to pass information
between a parent process and its children processes.

These problems can be overcome by using threads.

A thread, sometimes called a lightweight process (LWP), is a basic unit of CPU
utilization and executes within the address space of the process that creates it. It
comprises a thread ID, a program counter, a register set, errno, and a stack. It shares with
other threads belonging to the same process its code sections, data section, current
working directory, user and group 1Ds, signal setup and handlers, PCB and other
operating system resources, such as open files and system. A traditional (heavy weight)
process has a single thread of control. If a process has multiple threads of control, it can
do more than one task at a time. Figure 12.1 shows processes with single and multiple
threads. Note that, as stated above, threads within a process share code, data, and open
files, and have their own register sets and stacks.

| code | | data I I ldes] | code I | data | I files |

l stack] [registers m registers m registers]

[t J|[stecr J|[st |

- 8]

single-threaded multithreaded

Figure 12.1 Single- and multi-threaded processes

In Figure 12.2, we show the code structure for a sequential (single-threaded) process
and how the control thread moves from the main function to the f1 function and back,
and from f1 to main and back. The important point to note here is that there is just one
thread of control that moves around between various functions.

67

{
£1 (
£2(.);
}
£1¢(..)
{ ..}
£2¢(..)
{ ..}

Figure 12.2 Code structure of a single-threaded (sequential) process

In Figure 12.3, we show the code structure for a multi-threaded process and how
multiple threads of control are active simultaneously. We use hypothetical function

Thread

1

F2

Process
Terminated

thread () to create a thread. This function takes two arguments: the name of a function
for which a thread has to be created and a variable in which the ID of the newly created
thread is to be stored. The important point to note here is that multiple threads of control

are simultaneously active within the same process; each thread steered by its own PC.

main ()

{
thread(tl, £fl) ;

thread(t2,£2) ;

Process Address Space

main 1 12

<«—PC
PC
«— PC

Figure 12.3 Code structure of a multi-threaded process

68

The Advantages and Disadvantages of Threads
Four main advantages of threads are:

1.

3.

Responsiveness: Multithreading an interactive application may allow a program
to continuc running cven if part of it is blocked or is performing a lengthy
operation, thereby increasing responsiveness to the user.

Resource sharing: By default, threads share the memory and the resources of the
process to which they belong. Code sharing allows an application to have several
different threads of activity all within the same address space.

Economy: Allocating memory and resources for process creation is costly.
Alternatively, because threads share resources of the process to which they
belong, it is more economical to create and context switch threads.

Utilization of multiprocessor architectures: The benefits of multithreading of
multithreading can be greatly increased in a multiprocessor environment, where
each thread may be running in parallel on a different processor. A single threaded
process can only run on one CPU no matter how many are available.
Multithreading on multi-CPU machines increases concurrency.

Some of the main disadvantages of threads are:

L.

Resource sharing: Whereas resource sharing is one of the major advantages of
threads, it is also a disadvantage because proper synchronization is needed
between threads for accessing the shared resources (e.g., data and files).
Difficult programming model: It is difficult to write, debug, and maintain multi-
threaded programs for an average user. This is particularly true when it comes to
writing code for synchronized access to shared resources.

69

Operating Systems [CS-604] Lecture No.13

Operating Systems
Lecture No. 13

Reading Material
* UNIX/Linux manual pages pthread create (), pthread join(),and
pthread exit () calls
= Chapter 5 of the textbook
= Jccturc 13 on Virtual TV

Summary
= User- and Kernel —level threads

= Multi-threading models
= Solaris 2 threads model
= POSIX threads (the pthread library)
= Sample code
User and Kernel Threads

Support for threads may be provided at either user level for user threads or by kernel for
kernel threads.

User threads are supported above kernel and are implemented by a thread library at
the user level. The library provides support for thread creation, scheduling, and
management with no support from the kernel. Since the kernel is unaware of user-level
threads, all thread creation and scheduling are done in the user space without the need for
kernel intervention, and therefore are fast to create and manage. If the kernel is single
threaded, then any user level thread performing a blocking system call will cause the
entire process to block, even if other threads are available to run within the application.
User thread libraries include POSIX Pthreads , Solaris 2 Ul-threads, and Mach C-
threads.

Kernel threads are supported directly by the operating system. The kernel performs
the scheduling, creation, and management in kernel space; the kernel level threads are
hence slower to create and manage, compared to user level threads. However since the
kernel is managing threads, if a thread performs a blocking system call, the kernel can
schedule another thread in the application for execution. Windows NT, Windowss 2000,
Solaris, BeOS and Tru64 UNIX support kernel threads.

Multi-threading Models

There are various models for mapping user-level threads to kernel-level threads. We

describe briefly these models, their main characteristics, and examples.

1. Many-to-One: In this model, many user-level threads are supported per kernel
thread, as shown in Figure 13.1. Since only one kernel-level thread supports many
user threads, there is no concurrency. This means that a process blocks when a thread
makes a system call. Examples of these threads are Solaris Green threads POSIX

Pthreads.

70

User—level

Threads
W
Kernel-level
Thread

Figure 13.1 Many —to-One Model

2. One-to-One: In this model, there is a kernel thread for every user thread, as shown in
Figure 13.2. Thus, this model provides true concurrency. This means that a process
does not block when a thread makes a system call. The main disadvantage of this
model is the overhead of creating a kernel thread per user thread. Examples of these
threads are WindowsNT, Windows 2000, and OS/2.

P1 P2
User—level
Threads
@, O—O
Kernel-level
Threads

Figure 13.2 One-to-One Model

3. Many-to-One: In this model, multiple user-level threads are multiplexed over a
smaller or cqual number of kernel threads, as shown in Figurc 13.2. Thus, truc
concurrency is not achieved through this model. Examples of these threads are Solais
2 and HP-UX.

71

P1 P2
User—evel
Threads
Kernelevel
Threads

Figure 13.3 Many-to Many Model

Solaris 2 Threads Model

Solaris 2 has threads, lightweight processes (LWPs), and processes, as shown in Figure
13.4. At least one LWP is assigned to every user process to allow a user thread to talk to
a kernel thread. Uscer level threads arc switched and scheduled among LWPs without
kernel’s knowledge. One kernel thread is assigned per LWP. Some kemnel threads have
no LWP associated with them because these threads are not executed for servicing a
request by a user-level thread. Examples of such kernel threads are clock interrupt
handler, swapper, and short-term (CPU) shceduler.

task 1 lask 2 task 3

user-level thread

lightweaight procass

kemel thread

==

o

karnel

. J/

i BB B

Figure 13.4 Solaris 2 Threads Model

POSIX Threads (the pthread library)

Pthreads refers to the POSIX standard defining an API for thread creation, scheduling,
and synchronization. This is a specification for thread behavior not an implementation.
OS designers may implement the specification in any way they wish. Generally, libraries
implementing the Pthreads specification are restricted to UNIX-based systems such as
Solaris 2. In this section, we discuss the Pthreads library calls for creating, joining, and
terminating threads and use these calls to write small multi-threaded C programs.

72

Creating a Thread
You can create a threads by using the pthread create () call. Here is the syntax of
this call.
int pthread create(pthread t *threadp, const pthread attr t *attr,
void* (*routine) (void *), arg *arg);
where, ‘threadp’ contains thread ID (TID) of the thread created by the call, “attr’ is used
to modify the thread attributes (stack size, stack address, detached, joinable, priority,
etc.), ‘routine’ is the thread function, and ‘arg’ is any argument we want to pass to the
thread function. The argument does not have to be a simple native type; it can be a
‘struct’ of whatever we want to pass in.
The pthread create () call fails and returns the corresponding value if any of
the following conditions is detected:
= EAGAIN The system-imposed limit on the total number of threads in a process
has been exceeded or some system resource has been exceeded (for example, too
many LWPs were created).
* EINVAL The value specified by ‘attr’ is invalid.
= ENOMEM Not enough memory was available to create the new thread.
You can do error handling by including the <errno.h> file and incorporating proper
error handling code in your programs.

Joining a Thread
You can have a thread wait for another thread within the same process by using the
pthread_join() call. Here is the syntax of this call.

int pthread join(pthread t aThread, void **statusp);

where, ‘aThread’ is the thread ID of the thread to wait for and statusp’ gets the return
value of pthread exit () call made in the process for whom wait is being done.

A thread can only wait for a joinable thread in the same process address space; a
thrcad cannot wait for a detached threcad. Multiple threads can join with a thrcad but only
one returns successfully; others return with an error that no thread could be found with
the given TID

Terminating a Thread
You can terminate a thread explicitly by either returning from the thread function or by
using the pthread exit () call. Here is the syntax of the pthread exit () call
void pthread exit (void *valuep);
where, ‘valuep’ is a pointer to the value to be returned to the thread which is waiting for
this thread to terminate (i.e., the thread which has executed pthread join () for this
thread).

A thread also terminates when the main thread in the process terminates. When a
thread terminates with the exit() system call, it terminates the whole process because the
purpose of the exit() system call is to terminate a process and not a thread.

73

Sample Code

The following code shows the use of the pthread library calls discussed above. The

program creates a thread and waits for it. The child thread displays the following message

on the screen and terminates.
Hello, world! ... The threaded version.

As soon as the child thread terminates, the parent comes out of wait, displays the
following message and terminates.

Exiting the main function.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
/* Prototype for a function to be passed to our thread */
void* MyThreadFunc (void *arqg);
int main ()
{
pthread t aThread;
/* Create a thread and have it run the MyThreadFunction */
pthread create(&aThread, NULL, MyThreadFunc, NULL);
/* Parent waits for the aThread thread to exit */
pthread join(aThread, NULL);
printf ("Exiting the main function.\n");
return 0;
}
void* MyThreadFunc (void* arg)
{
printf ("Hello, world! ... The threaded version.\n");
return NULL;

The following session shows compilation and execution of the above program. Does

the output make sense to you?

$ gcc hello.c -o hello -lpthread -D_REENTRANT
$ hello

Hello, world! ... The threaded version.
Exiting the main function.

S
Note that you need to take the following steps in order to be able to use the pthread
library.

1. Include <pthread.h> in your program

2. Link the pthread library with your program (by using the —Ipthread option in the

compiler command)
3. Passthe REENTRANT macro from the command line (or define it in your
program)

74

Here is another program that uses the pthread library to create multiple threads and
have them display certain messages. Read through the code to understand what it does.
Then compile and run it on your UNIX/Linux system to display output of the program
and to see if you really understood the code.

SRR Rk Rk kR R R R kR kR Rk Rk R R Rk R sk sk R sk kR kR R Rk R Rk Rk ok K

* FILE: hello_arg2.c

* DESCRIPTION:

* A "hello world" Pthreads program which demonstrates another safe way
* to pass arguments to threads during thread creation. In this case,

* a structure is used to pass multiple arguments.

%k

* LAST REVISED: 09/04/02 Blaise Barney
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 8

char *messages[NUM_THREADS];

struct thrcad_data

{
int thread id;
int sum;
char *message;

IR
struct thread data thread data_array[]NUM_THREADS];

void *PrintHello(void *threadarg)

f
1

int taskid, sum;
char *hello_msg;
struct thread data *my_data;

sleep(1);

my_data = (struct thread data *) threadarg;

taskid = my_data->thread_id;

sum = my_data->sum;

hello_msg = my_ data->message;

printf("Thread %d: %s Sum=%d\n", taskid, hello_msg, sum);
pthread_exit(NULL);

}

int main(int argc, char *argv[])

{

75

pthread_t threadsfNUM_THREADS];
int *taskidsf]NUM_THREADS];
int re, t, sum;

sum=0;

messages[0] = "English: Hello World!";
messages[1] = "French: Bonjour, le monde!";
messages[2] = "Spanish: Hola al mundo™;
messages[3] = "Klingon: Nuq neH!";
messages[4] = "German: Guten Tag, Welt!";
messages[5] = "Russian: Zdravstvytye, mir!";
messages[6] = "Japan: Sekai e konnichiwa!";
messages|[7] = "Latin: Orbis, te saluto!";

for(t=0; t<NUM_THREADS; t++) {
sum = sum + t;
thread data_array[t].thread id =t;
thread data array[t].sum = sum;
thread data_array[t].message = messages|[t];
printf("Creating thread %d\n", t);
rc = pthread _crcate(&threads(t], NULL, PrintHcllo, (void *) &thrcad data_array([t]);
if (rc) §
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
H
pthrcad_cxit(NULL);

j

Reference
The above code was taken from the following website.
http://www.llnl.gov/computing/tutorials/pthreads/samples/hello arg2.c

76

Operating Systems [CS5-604] Lecture No.14

Operating Systems
Lecture No. 14

Reading Material
= Chapter 6 of the textbook
= Lecture 14 on Virtual TV

Summary
= Basic concepts
» Scheduling criteria
= Preemptive and non-preemptive algorithms
= First-Come-First-Serve scheduling algorithm

Basic Concepts

The objective of multiprogramming is to have some process running at all times, in order
to maximize CPU utilization. In a uniprocessor system, only one process may run at a
time; any other processes much wait until the CPU is free and can be rescheduled.

In multiprogramming, a process is executed until it must wait, typically for the
completion of some I/O request. In a simple computer system, the CPU would then sit
idle; all this waiting time is wasted. Multiprogramming entails productive usage of this
time. When one process has to wait, the OS takes the CPU away from that process and
gives the CPU to another process. Almost all computer resources are scheduled before
use.

Life of a Process

As shown in Figure 14.1, process execution consists of a cycle of CPU execution and I/O
wait. Processes alternates between these two states. Process execution begins with a CPU
burst. An I/O burst follows that, and so on. Eventually, the last CPU burst will end with
a system request to terminate execution, rather than with another I/O burst.

An T/O bound program would typically have many very short CPU bursts. A CPU-
bound program might have a few very long CPU bursts. This distribution can help us
select an appropriate CPU-scheduling algorithm. Figure 14.2 shows results on an
empirical study regarding the CPU bursts of processes. The study shows that most of the
processes have short CPU bursts of 2-3 milliseconds.

77

-
-
w

load store
add store
read from file

wait for [0

store increment
index
write to file

wait for [0

load store
add store
read from file

wait for 'O

"
-
-

CPL burst

10 burst

CPU burst

10 burst

"‘_"‘\."_"“_"‘\."'_'L_"v"—'\—"v"—'l

CPL burst

10 st

Figure 14.1 Alternating Sequence of CPU and I/O Bursts

trequency

160

140

120

16 24 az 40
hurst duration (milliseconds)

Figure 14.2 Histogram of CPU-burst Times

78

CPU Scheduler
Whenever the CPU becomes idle, the operating system must select one of the processes
in the ready queue to be executcd. The short-term scheduler (i.c., the CPU scheduler)
selects a process to give it the CPLI. It selects from among the processes in memory that
are ready to execute, and invokes the dispatcher to have the CPU allocated to the selected
process.

A ready queue can be implemented as a FIFO queue, a tree, or simply an unordered
linked list. The records (nodes) in the ready queue are generally the process control
blocks (PCBs) of processes.

Dispatcher
The dispatcher is a kernel module that takes control of the CPU from the current process
and gives it to the process selected by the short-term scheduler. This function involves:

= Switching the context (i.e., saving the context of the current process and restoring
the context of the newly selected process)

* Switching to user mode

= Jumping to the proper location in the user program to restart that program

The time it takes for the dispatcher to stop one process and start another running is known
as the dispatch latency.

Preemptive and Non-Preemptive Scheduling
CPU scheduling can take place under the following circumstances:
1. When a process switches from the running state to the waiting state (for example,
an 1/0) request is being completed)
2. When a process switches from the running state to the ready state (for example
when an interrupt occurs)
3. When a process switches from the waiting state to the ready state (for example,
completion of 1/0)
4. When a process terminates

In 1 and 4, there is no choice in terms of scheduling; a new process must be selected
for execution. There is a choice in case of 2 and 3. When scheduling takes place only
under 1 and 4, we say, scheduling is non-preemptive; otherwise the scheduling scheme
is preemptive. Under non-preemptive scheduling once the CPU has been allocated to a
process the process keeps the CPU until either it switches to the waiting state, finishes its
CPU burst, or terminates. This scheduling method does not require any special hardware
needed for preemptive scheduling.

Preemptive scheduling incurs a cost. Consider the case of two processes sharing data.
One may be in the midst of updating the data when it is preempted and the second
proccss is run. The sccond process may try to rcad the data, which arc currently in an
inconsistent state. New mechanisms are needed to coordinate access to shared data. We
discuss this topic in Chapter 7 of the textbook.

79

Scheduling Criteria

The scheduling criteria include:

» CPU utilization: We want to keep CPU as busy as possible. In a real system it should
range from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used
system)

= Throughput: If CPU is busy executing processes then work is being done. One
measure of work is the number of processes completed per time, called, throughput.
We want to maximize the throughput.

* Turnaround time: The interval from the time of submission to the time of
completion is the turnaround time. Turnaround time is the sum of the periods spent
waiting to get into memory, waiting in the ready queue, executing on the CPU and
doing I/O. We want to minimize the turnaround time.

* Waiting time: Waiting time is the time spent waiting in the ready queue. We want to
minimize the waiting time to increase CPU efficiency.

= Response time: It is the time from the submission of a request until the first response
is produced. Thus response time is the amount of time it takes to start responding but
not the time it takes to output that response. Response time should be minimized.

Scheduling Algorithms
We will now discuss some of the commonly used short-term scheduling algorithms.
Some of these algorithms are suited well for batch systems and others for time-sharing
systems. Here are the algorithms we will discuss:
» First-Come-First-Served (FCFS) Scheduling
Shorted Job First (SJF) Scheduling
Shortest Remaining Time First (SRTF) Scheduling
Priority Scheduling
Round-Robin Scheduling
= Multilevel Queues Scheduling
» Multilevel Feedback Queues Scheduling
»= UNIX System V Scheduling

First-Come, First-Served (FCFS) Scheduling
The process that requests the CPU first (i.e., enters the ready queue first) is allocated the
CPU first. The implementation of an FCFS policy is managed with a FIFO queue. When
a process enters the ready queue, its PCB is linked onto the tail of the queue. When CPU
is free, it is allocated to the process at the head of the queue. The running process is
removed from the queue. The average waiting time under FCFS policy is not minimal
and may vary substantially if the proccss CPU-burst times vary greatly. FCES is a non-
preemptive scheduling algorithm.

We use the following system state to demonstrate the working of this algorithm. For
simplicity, we assume that processes are in the ready queue at time 0.

Process Burst Time
P1 24
P2 3
P3 3

Suppose that processes arrive into the system in the order: P1, P2, P3. Processes are
served in the order: P1, P2, P3.The Gantt chart for the schedule is shown in Figure 14.3.

80

