Operating Systems [CS5-604] Lecture No.14

Operating Systems
Lecture No. 14

Reading Material
= Chapter 6 of the textbook
= Lecture 14 on Virtual TV

Summary
= Basic concepts
» Scheduling criteria
= Preemptive and non-preemptive algorithms
= First-Come-First-Serve scheduling algorithm

Basic Concepts

The objective of multiprogramming is to have some process running at all times, in order
to maximize CPU utilization. In a uniprocessor system, only one process may run at a
time; any other processes much wait until the CPU is free and can be rescheduled.

In multiprogramming, a process is executed until it must wait, typically for the
completion of some I/O request. In a simple computer system, the CPU would then sit
idle; all this waiting time is wasted. Multiprogramming entails productive usage of this
time. When one process has to wait, the OS takes the CPU away from that process and
gives the CPU to another process. Almost all computer resources are scheduled before
use.

Life of a Process

As shown in Figure 14.1, process execution consists of a cycle of CPU execution and I/O
wait. Processes alternates between these two states. Process execution begins with a CPU
burst. An I/O burst follows that, and so on. Eventually, the last CPU burst will end with
a system request to terminate execution, rather than with another I/O burst.

An T/O bound program would typically have many very short CPU bursts. A CPU-
bound program might have a few very long CPU bursts. This distribution can help us
select an appropriate CPU-scheduling algorithm. Figure 14.2 shows results on an
empirical study regarding the CPU bursts of processes. The study shows that most of the
processes have short CPU bursts of 2-3 milliseconds.

77

-
-
w

load store
add store
read from file

wait for [0

store increment
index
write to file

wait for [0

load store
add store
read from file

wait for 'O

"
-
-

CPL burst

10 burst

CPU burst

10 burst

"‘_"‘\."_"“_"‘\."'_'L_"v"—'\—"v"—'l

CPL burst

10 st

Figure 14.1 Alternating Sequence of CPU and I/O Bursts

trequency

160

140

120

16 24 az 40
hurst duration (milliseconds)

Figure 14.2 Histogram of CPU-burst Times

78

CPU Scheduler
Whenever the CPU becomes idle, the operating system must select one of the processes
in the ready queue to be executcd. The short-term scheduler (i.c., the CPU scheduler)
selects a process to give it the CPLI. It selects from among the processes in memory that
are ready to execute, and invokes the dispatcher to have the CPU allocated to the selected
process.

A ready queue can be implemented as a FIFO queue, a tree, or simply an unordered
linked list. The records (nodes) in the ready queue are generally the process control
blocks (PCBs) of processes.

Dispatcher
The dispatcher is a kernel module that takes control of the CPU from the current process
and gives it to the process selected by the short-term scheduler. This function involves:

= Switching the context (i.e., saving the context of the current process and restoring
the context of the newly selected process)

* Switching to user mode

= Jumping to the proper location in the user program to restart that program

The time it takes for the dispatcher to stop one process and start another running is known
as the dispatch latency.

Preemptive and Non-Preemptive Scheduling
CPU scheduling can take place under the following circumstances:
1. When a process switches from the running state to the waiting state (for example,
an 1/0) request is being completed)
2. When a process switches from the running state to the ready state (for example
when an interrupt occurs)
3. When a process switches from the waiting state to the ready state (for example,
completion of 1/0)
4. When a process terminates

In 1 and 4, there is no choice in terms of scheduling; a new process must be selected
for execution. There is a choice in case of 2 and 3. When scheduling takes place only
under 1 and 4, we say, scheduling is non-preemptive; otherwise the scheduling scheme
is preemptive. Under non-preemptive scheduling once the CPU has been allocated to a
process the process keeps the CPU until either it switches to the waiting state, finishes its
CPU burst, or terminates. This scheduling method does not require any special hardware
needed for preemptive scheduling.

Preemptive scheduling incurs a cost. Consider the case of two processes sharing data.
One may be in the midst of updating the data when it is preempted and the second
proccss is run. The sccond process may try to rcad the data, which arc currently in an
inconsistent state. New mechanisms are needed to coordinate access to shared data. We
discuss this topic in Chapter 7 of the textbook.

79

Scheduling Criteria

The scheduling criteria include:

» CPU utilization: We want to keep CPU as busy as possible. In a real system it should
range from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used
system)

= Throughput: If CPU is busy executing processes then work is being done. One
measure of work is the number of processes completed per time, called, throughput.
We want to maximize the throughput.

* Turnaround time: The interval from the time of submission to the time of
completion is the turnaround time. Turnaround time is the sum of the periods spent
waiting to get into memory, waiting in the ready queue, executing on the CPU and
doing I/O. We want to minimize the turnaround time.

* Waiting time: Waiting time is the time spent waiting in the ready queue. We want to
minimize the waiting time to increase CPU efficiency.

= Response time: It is the time from the submission of a request until the first response
is produced. Thus response time is the amount of time it takes to start responding but
not the time it takes to output that response. Response time should be minimized.

Scheduling Algorithms
We will now discuss some of the commonly used short-term scheduling algorithms.
Some of these algorithms are suited well for batch systems and others for time-sharing
systems. Here are the algorithms we will discuss:
» First-Come-First-Served (FCFS) Scheduling
Shorted Job First (SJF) Scheduling
Shortest Remaining Time First (SRTF) Scheduling
Priority Scheduling
Round-Robin Scheduling
= Multilevel Queues Scheduling
» Multilevel Feedback Queues Scheduling
»= UNIX System V Scheduling

First-Come, First-Served (FCFS) Scheduling
The process that requests the CPU first (i.e., enters the ready queue first) is allocated the
CPU first. The implementation of an FCFS policy is managed with a FIFO queue. When
a process enters the ready queue, its PCB is linked onto the tail of the queue. When CPU
is free, it is allocated to the process at the head of the queue. The running process is
removed from the queue. The average waiting time under FCFS policy is not minimal
and may vary substantially if the proccss CPU-burst times vary greatly. FCES is a non-
preemptive scheduling algorithm.

We use the following system state to demonstrate the working of this algorithm. For
simplicity, we assume that processes are in the ready queue at time 0.

Process Burst Time
P1 24
P2 3
P3 3

Suppose that processes arrive into the system in the order: P1, P2, P3. Processes are
served in the order: P1, P2, P3.The Gantt chart for the schedule is shown in Figure 14.3.

80

P P, Ps

0 2 2 3
Figure 14.3 Gantt chart showing execution of processes in the order P1, P2, P3
Here are the waiting times for the three processes and the average waiting time per
process.
= Waiting times P1 =0; P2=24; P3=27
= Average waiting time: (0+24+27)3 =17

Suppose that processes arrive in the order: P2, P3, P1. The Gantt chart for the
schedule is shown in Figure 14.4:

P2 Ps P4

0 3 6 30

Figure 14.4 Gantt chart showing execution of processes in the order P2, P3, P1

Here arc the waiting timces for the three processes and the average waiting time per
process.

» Waiting time for P1 =6; P2=0, P3=3

* Average waiting time: (6 + 0+ 3)/3=3

When FCFS scheduling algorithm is uscd, the conveoy effect occurs when short
processes wait behind a long process to use the CPU and enter the ready queue in a
convoy after completing their /0. This results in lower CPU and device utilization than
might be possible if shorter processes were allowed to go first.

In the next lecture, we will discuss more scheduling algorithms.

81

Operating Systems [CS-604] Lecture No.15

Operating Systems
Lecture No. 15

Reading Material
= Chapter 6 of the textbook
= Lecture 15 on Virtual TV

Summary
= Scheduling algorithms

Shortest-Job-First Scheduling

This algorithm associates with ach process the length of the latter’s next CPU burst.
When the CPU is available, it is assigned to the process that has the smallest next CPU
burst. If two processes have the same length next CPU burst, FCFS scheduling is used to
break the tie. The real difficulty with the SJF algorithm is in knowing the length of the
next CPU request. For long term scheduling in a batch system, we can use as the length
the process time limit that a user specifies when he submits the job.

For short-tcrm CPU scheduling, there is no way to length of the next CPU burst. Onc
approach is to try to approximate SJF scheduling, by assuming that the next CPU burst
will be similar in length to the previous ones, for instance.

The next CPU burst is generally predicted as an exponential average of the measured
lengths of previous CPU bursts. Let t;, be the length of the nth CPU burst and let T, be

our predicted value for the next CPU burst. We define T4 to be
Tn+]= o tn + (].- a) Tn
where, 0 < a < 1. We discuss this equation in detail in a subsequent lecture.

The SJF algorithm may either be preemptive or non-preemptive. The choice arises
when a new process arrives at the ready queue while a previous process is executing. The
new process may have a shorter next CPU burst than what is left of the currently
executing process. A preemptive SJF algorithm preempts the currently executing process,
whereas a non-preemptive SIF algorithm will allow the currently running process to
finish its CPU burst. Preemptive SJF scheduling is sometimes called shortest-

remaining-time-first scheduling,
We illustrate the working of the SJF algorithm by using the following system state.

Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 I
P4 5.0 4

The Gantt chart for the execution of the four processes using SJF is shown in Figure 15.1.

82

Figure 15.1 Gantt chart showing execution of processes using SJF
Here is the average waiting time per process.
* Average waiting time = (0 + 6 + 3 + 7)/4 = 4 time units
We illustrate the working of the SRTF algorithm by using the system state shown

above. The Gantt chart for the execution of the four processes using SRTF is shown in
Figure 15.2.

Figure 15.2 Gantt chart showing execution of processes using SRTF
Here is the average waiting time per process.

* Average waiting time = (9 + 1 + 0 +2)/4 = 3 time units

Priority Scheduling

SJF is a special case of the general priority-scheduling algorithm. A priority is
associated with each process, and the CPU is allocated to the process with the highest
priority (smallest integer = highest priority). Equal priority processes are scheduled in
FCFS order. The SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst of a process, the
lower its priority, and vice versa.

Priority scheduling can cither be preemptive or non-preempltive. When a process
arrives at the ready queue, its priority is compared with the priority of the currently
running process. A preemptive priority-scheduling algorithm will preempt the CPU if the
priority of the newly arrived process is higher than the priority of the currently running
process. A non-preemptive priority- scheduling algorithm will simply put the new
process at the head of ready queue.

A major problem with priority- scheduling algorithms is indefinite blocking (or
starvation), A process that is ready to run but lacking the CPU can be considered
blocked-waiting for the CPU. A priority-scheduling algorithm can leave some low
priority processes waiting indefinitely for the CPU. Legend has it that when they were
phasing out IBM 7094 at MIT in 1973, they found a process stuck in the ready queue
since 1967!

83

Aging is solution to the problem of indefinite blockage of low-priority processes. It
involves gradually increasing the priority of processes that wait in the system for a long
time. For example, if priority numbers range from 0 (high priority) to 127 (high priority),
we could decrement priority of every process periodically (say every 10 minutes). This
would result in every process in the system eventually getting the highest priority in a
reasonably short amount of time and scheduled to use the CPU.

84

Operating Systems [CS-604] Lecture No.16

Operating Systems
Lecture No. 16

Reading Material
= Chapter 6 of the textbook
= Lecture 16 on Virtual TV

Summary
= Scheduling algorithms

Why is SJF optimal?

SJF is an optimal algorithm because it decreases the wait times for short processes much
more than it increases the wait times for long processes. Let’s consider the cxample
shown in Figure 16.1, in which the next CPU bursts of P1, P2, and P3 are 5, 3, and 2,
respectively. The first Gantt chart shows execution of processes according to the longest-
job-first algorithm, resulting in the waiting times for P1, P2, and P3 to be 0, 5, and 8
times units. The second Gantt chart shows execution of processes according to the
shortcst-job-first algorithm, resulting in the waiting times for P1, P2, and P3 to be 0, 2,
and 5. Note that the waiting time for P2 has decreased from 5 to 2 and that of P3 has
decreased from 8 to 0. The increase in the wait time for P1 is from 0 to 5, which is much
smaller than the decrease in the wait times for P2 and P3.

P1 P2 P3

P3 P2 P1

Figure 16.1 Two execution sequences for P1, P2, and P3: longest-job-first and shortest-
job-first

Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-sharing
systems. It is similar to FCFS scheduling but preemption is added to switch between
processes. A small unit of time, called a time quantum (or time slice) is defined. The
ready queue is treated as a circular queue. The CPU scheduler goes around the ready
queue, allocating the CPU to each process for a time interval of up to 1 time quantum.
To implement RR scheduling, we keep ready queue as a FIFO queue of processes. New
processes are added to the tail of the ready queue. The CPU scheduler picks the first
process from the ready queue, sets a timer to interrupt after | time quantum, and then
dispatches the process. One of the two things will then happen. The process may have a
CPU burst of less than | time quantum, in which casc the process itsclf will releasc the
CPU voluntarily. The scheduler will then proceed to the next process in the ready queue.
Otherwise, if the CPU burst of currently running process is longer than one time

85

quantum, the timer will go off and will cause an interrupt to the operating system. A
context switch will happen, the current process will be put at the tail of the ready queue,
and the newly scheduled process will be given the CPU.

The average waiting time under the RR policy however is often quite long. Ttis a
preemptive scheduling algorithm. If there are n processes n the ready queue, context
switch time is t.; and the time quantum is g then each process gets 1/n of the CPU time in
chunks of at most ¢ time units. Each process must wait no longer than (n-1)*(q+t.s) time
units until its next time quantum.

The performance of RR algorithm depends heavily on the size of the time quantum. If
the time quantum is very large (infinite), the RR policy remains the same as the FCFS
policy. If the time quantum is very small, the RR approach is called the processor
sharing and appears to the users as though each of n processes has its own processor
running at 1/n the speed of real processor (q must be large with respect to context switch,
otherwise the overhead is too high). The drawback of small quantum is more frequent
context switches. Since context switching is the cost of the algorithm and no useful work
is donc for any uscr process during contcext switching, thc number of context switches
should be minimized and the quantum should be chosen such that the ratio of a quantum
to context switching is not less than 10:1 (i.e., context switching overhead should not be
more than 10% of the time spent on doing useful work for a user process). Figure 16.2
shows increase in the number of context switches with decrease in quantum size.

procass lime =10 dquanium context
awitches
12 o
0 10
[i
a & 10
1 9
a 1 2 3 4 = =1 T a8 9 1D

Figure 16.2 Quantum size versus number of context switches

The turnaround time of a process under round robin is also depends on the size of the
time quantum. In Figure 16.3 we show a workload of four processes P1, P2, P3, and P4
with their next CPU bursts as 6, 3, 1, and 7 time units. The graph in the figure shows that
best (smallest) turnaround time is achieved when quantum size is 6 or greater, Note that
most of the given processes finish their next CPU bursts with quantum of 6 or greater.
We can make a general statement that the round-robin algorithm gives smallest average
turnaround time when quantum value is chosen such that most of the processes finish
their next CPU bursts within the quantum.

86

process time

0,00
= = &M

- W

10.5

10.0 =

average turnaround time

2.5 =

8.0 -

1 1 1 | 1 1
1 2 3 El 5 & T

time gquantum

Figurc 16.3 Turnaround timc versus quantum size

We now consider the following system workload to illustrate working of the round-
robin algorithm. Execution of P1 though P4 with quantum 20 is shown in Figure 16.4. In
the table, original CPU bursts are shown in bold and remaining CPU bursts (after a
process has used the CPU for one quantum) are shown in non-bold font.

Process Burst Time
P1 53 —33—13
P2 17
P3 68 —48 —28 — 8
P4 24 —4

Po| Py | P | Pa| Po| Ps [Pa| P | Ps| Py

0 20 37 57 77 97 117 121 134 154 162

Figure 16.4 Gantt chart showing execution of P1, P2, P3, and P4 with quantum 20 time
units

Figure 16.5 shows wait and turnaround times for the four processes. The average wait
time for a process comes out to be 73 time units for round robin and 38 for SJF.
Typically, RR has a higher average turnaround than SJF, but better response. In time-
sharing systems, shorter response time for a process is more important than shorter
turnaround time for the process. Thus, round-robin scheduler matches the requirements of
time-sharing systems better than the SJF algorithm. SJF scheduler is better suited for
batch systems, in which minimizing the turnaround time is the main criterion.

87

Process Turnaround Time Waiting Time

P1 134 134 -53 =81
P2 37 37-17 =20
P3 162 162 -68 =94
P4 121 121 -24 =97

Figure 16.5 Wait and turnaround times for processes

Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in which processes
are easily classified into different groups. For example, a common division is made
between foreground (or interactive) processes and background (or batch) processes.
These two types of processes have different response time requirements and so might
have different scheduling needs. In addition, foreground processes may have priority over
background processes.

A multilevel queue-scheduling algorithm partitions the ready queue into several
separate queues, as shown in Figure 16.5. Each queue has its own priority and scheduling
algorithm. Proccsscs arc permancntly assigned to onc queue, gencrally based o somce
property of the process, such as memory size, process priority or process type. In
addition, there must be scheduling among the queues, which is commonly implemented
as fixed-priority preemptive scheduling i.e., serve all from foreground then from
background. Another possibility is to time slice between queues. Each queue gets a
certain portion of thc CPU time, which it can then schedule among the various processcs
in its queue, e.g., 80% to foreground in RR and 20% to background in FCFS. Scheduling
across queues prevents starvation of processes in lower-priority queues.

highest pricrity

—ETT——

|11
|
I

shudent eocesses i:ﬂ-

lownnt priority

Figure 16.5 Multilevel queues scheduling

88

Operating Systems [CS-604] Lecture No.17

Operating Systems
Lecture No. 17

Reading Material
= Chapter 6 of the textbook
= Lecture 16 on Virtual TV

Summary
= Scheduling algorithms
= UNIX System V scheduling algorithm
= Optimal scheduling
= Algorithm evaluation

Multilevel Feedback Queue Scheduling

Multilevel feedback queue scheduling allows a process to move between queues. The
idea is to separate processes with different CPU burst characteristics. 1f a process uses t0o
much CPU time, it will be moved to a lower-priority queue. This scheme leaves 1/0
bound and interactive processes in the higher-priority queues. Similarly a process that
waits too long in a lower-priority queue may be moved o a higher priority queue. This
form of aging prevents starvation.

In general, a multi-level feedback queue scheduler is defined by the following
parameters:

» Number of queues

» Scheduling algorithm for each queue

= Method used to determine when to upgrade a process to higher priority queue

= Method used to determine when to demote a process

» Method used to determine which queue a process enters when it needs service

Figure 17.1 shows an example multilevel feedback queue scheduling system with the
ready queue partitioned into three queues. In this system, processes with next CPU bursts
less than or equal to 8 time units are processed with the shortest possible wait times,
followed by processes with CPU bursts greater than 8 but no greater than 16 time units.
Processes with CPU greater than 16 time units wait for the longest time.

quantum = 16 f?
- FCFS -v

Figurc 17.1 Multilevel Feedback Qucues Scheduling

89

UNIX System V scheduling algorithm

UNIX System V scheduling algorithm is essentially a multilevel feedback priority queues
algorithm with round robin within each queue, the quantum being equal tol second. The
priorities are divided into two groups/bands:

= Kernel Group

= User Group
Priorities in the Kernel Group are assigned in a manner to minimize bottlenecks, i.e,
processes waiting in a lower-level routine get higher priorities than those waiting at
relatively higher-level routines. We discuss this issue in detail in the lecture with an
example. In decreasing order of priority, the kernel bands are:

= Swapper

= Block 1/0 device control processes

= File manipulation

= Character I/O device control processes

= User processes

The priorities of processes in the Kernel Group remain fixed whereas the priorities of
processes in the User Group arc recalculated cvery second. Inside the Uscr Group, the
CPU-bound processes are penalized at the expense of I/O-bound processes. Figure 17.2
shows the priority bands for the various kernel and user processes.

Kermniel Mocde Priority Lavets Faady Queué
Priotilies —
Swapger {__;I
Wniting for Deak WO F— f _) —{\ }— {__ J
Mot i =
i i Wiatking tor Buftar §—— r:_‘:,_.r’ __}
walting for inode 5 l:_j
VemEng Mo TTY it ram— ':_-_‘j {_‘}_{:_:}
Imtermaptitale | Wsimg tor T Oty
Y Wik ar Chikd Exl —l:_- :]‘ _{ ?"
Thresnoid Priviy

Usaor Level D
Usor Lowval 1 —{_:; —{ ‘J_ {'_J
Upar Lowal 2 —|'_':_'I‘p

! (
(
E Lizar Laval 3 —()—)

LUsar Moda Usner Lavel n b -)

Friarities

Figure 17.2. UNIX System V Scheduling Algorithm

Every second, the priority number of all those processes that are in the main memory
and ready to run is updated by using the following formula:

Priority # = (Recent CPU Usage)/2 + Threshold Priority + nice

90

The ‘threshold priority’ and ‘nice’ values are always positive to prevent a user from
migrating out of its assigned group and into a kernel group. You can change the nice
value of your process with the nice command.

In Figure 17.3, we illustrate the working of the algorithm with an example. Note that
recent CPU usage of the current process is updated every clock tick; we assume that
clock interrupt occurs every sixtieth of a second. The priority number of every process in
the ready queue is updated every second and the decay function is applied betfore
recalculating the priority numbers of processes.

Pa Ps Pc
CPU Priority CPU | Priorit CPU
i o - Priority Count
Time Priority Count Count |
U ° 60 0 80 0
1 .
60 60 0
1L 3 60 0 |
1
30 60 ! 0
‘1 e 15 7 30 . 60 1
| i
7 67 30 : 75 30
3 8 15 :
N 63 e
67 30
33 E
4 15
1 s 63 7 . 87
8 |
16 67 63 7
5 68 76 33 :

Figure 17.3 Illustration of the UNIX System V Scheduling Algorithm

Figurc 17.4 shows that in casc of a tic, proccsscs arc scheduled on First-Come-First-
Serve basis.

91

60
B
Higher B A
Priority
A
A
B A B B A runs first
A

Figure 17.4 FCFS Algorithm is Used in Case of a Tie

Algorithm Evaluation

To select an algorithm, we must take into account certain factors, defining their relative
importance, such as:
= Maximum CPU utilization under the constraint that maximum response time is 1
second.
= Maximize throughput such that turnaround time is (on average) linearly
proportional to total execution time.

Scheduling algorithms can be evaluated by using the following techniques:

Analytic Evaluation

A scheduling algorithm and some system workload are used to produce a formula or
number, which gives the performance of the algorithm for that workload. Analytic
cvaluation falls under two catcgorics:

Deterministic modeling
Deterministic modeling is a typc of analytic cvaluation. This mcthod takes a particular

predetermined workload and defines the performance of each algorithm for workload in
terms of numbers for parameters such as average wait time, average turnaround time, and
average response time. Gantt charts are used to show executions of processes. We have
been using this technique to explain the working of an algorithm as well as to evaluate
the performance of an algorithm with a given workload.

Deterministic modeling is simple and fast. It gives exact numbers, allowing the
algorithms to be compared. However it requires exact numbers for input and its answers
apply to only those cases.

Queuing Models

The computer system can be defined as a network of servers. Each server has a queue of
waiting processes. The CPU is a server with its ready queue, as are I/O systems with their
device queues. Knowing the arrival and service rates of processes for various servers, we
can compute utilization, average queue length, average wait time, and so on. This kind of
study is called queuing-network analysis. If n is the average queue length, W is the

92

average waiting time in the queue, and let A is the average arrival rate for new processes
in the queue, then

n=A*W

This formula is called the Little’s formula, which is the basis of queuing theory, a
branch of mathematics used to analyze systems involving queues and servers.

At the moment, the classes of algorithms and distributions that can be handled by
queuing analysis are fairly limited. The mathematics involved is complicated and
distributions can be difficult to work with. It is also generally necessary to make a
number of independent assumptions that may not be accurate. Thus so that they will be
able to compute an answer, queuing models are often an approximation of real systems.
As a result, the accuracy of the computed results may be questionable.

The table in Figure 17.5 shows the average waiting times and average queue lengths
for the various scheduling algorithms for a pre-determined system workload, computed
by using Little’s formula. The average job arrival rate is 0.5 jobs per unit time.

Algorithm Average Wait ~ Average Queue
Time Lenath (n
w=t, ength (n)
FCFS 4.6 2.3
SJF 3.6 1.8
SRTF 3.2 1.6
RR (g=1 7.0 3.5
RR (g=4) 6.0 3.0
Figure 17.5 Average Wait Time and Average Queue Length Computed With Little’s
Equation
Simulations

Simulations involve programming a model of the computer system, in order to get a more
accurate evaluation of the scheduling algorithms. Software date structures represent the
major components of the system. The simulator has a variable representing a clock; as
this variable’s value is increased, the simulator modifies the system state to reflect the
activities of the devices, the processes and the scheduler. As the simulation executes,
statistics that indicate algorithm performance are gathered and printed. Figure 17.6 shows
the schematic for a simulation system used to evaluate the various scheduling algorithms.

Some of the major issues with simulation are:

= Expensive: hours of programming and execution time are required

* Simulations may be erroneous because of the assumptions about distributions

used for arrival and service rates may not reflect a real environment

93

performance
CPL 10

simulation = statistics
for FOFS
[FoFs |
W 213

actual CPU 12 parformance
process o 'O 112 e simulation mje Slatistics
aexacution CPU 2 for SJF
W 147 EiF
CPU 173

a

frace lape :
parformance
simulation mje- stafistics
for ARG = 14)
[BRO=14) |

Figure 17.6 Simulation of Scheduling Algorithms

Implementation

Even a simulation is of limited accuracy. The only completely accurate way to evaluate a
scheduling algorithm is to code it, put it in the operating system and see how it works.
This approach puts the actual algorithm in the real system for evaluation under real
operating conditions. The Open Source software licensing has made it possible for us to
test various algorithms by implementing them in the Linux kernel and measuring their
true performance.

The major difficulty is the cost of this approach. The cxpensc is incurred in coding
the algorithm and modifying the operating system to support it, as well as its required
data structures. The other difficulty with any algorithm evaluation is that the environment
in which the algorithm works will change.

94

Operating Systems [CS-604] Lecture No. 18 and 19

Operating Systems
Lecture No. 18 and 19

Reading Material
= Chapter 7 of the textbook
= Lectures 18 and 19 on Virtual TV

Summary
= Process Synchronization: the basic concept
= The Critical Section Problem
= Solutions for the Critical Section Problem
= 2-Process Critical Section Problem solutions

Process Synchronization

Concurrent processes or threads often need access to shared data and shared resources, If
there is no controlled access to shared data, it is often possible to obtain an inconsistent
state of this data. Maintaining data consistency requires mechanisms to ensure the orderly
cxccution of cooperating processes, and hence various process synchronization mcthods
are used. In the producer-consumer problem that was discussed earlier, the version only
allows one item less than the buffer size to be stored, to provide a solution for the buffer
to use its entire capacity of N items is not simple. The producer and consumer share data
structure ‘buffer’ and use other variables shown below:

#define BUFFER SIZE 10
typedef struct

{

} item;

item buffer [BUFFER SIZE];
int in=0;

int out=0;

The code for the producer process is:

while (1)

{
/*Produce an item in nextProduced*/
while (counter == BUFFER SIZE); /*do nothing*/
buffer[in]=nextProduced;
in=(in+1)%BUFFER_SIZE;
counter++;

95

The code for the consumer process is:

while (1)

{
while (counter==0); //do nothing
nextConsumed=buffer [out];
out=(out+l)%BUFFER_SIZE;
counter--;
/*Consume the item in nextConsumed*/

Both producer and consumer routines may not execute properly if executed concurrently.
Suppose that the value of the counter is 5, and that both the producer and the consumer
execute the statement counter++ and counter- - concurrently. Following the execution of
these statements the value of the counter may be 4,5,0r 6! The only correct result of these
statements should be counter= =5, which is generated if the consumer and the producer
execute separately. Suppose counter++ is implemented in machine code as the following
instructions:

MOV R1, counter
INC RI1
MOV counter, RI1

whereas counter- - maybe implemented as:

MOV R2, counter
DEC R2
MOV counter, R2

If both the producer and consumer attempt to update the buffer concurrently, the
machine language statements may get interleaved. Interleaving depends upon how the
producer and consumer processes are scheduled. Assume counter is initially 5. One
interleaving of statements is:

producer: MOV Rl, counter (EL = 5)

INC RI1 (RL = 6)
consumer: MOV R2, counter (R2 = 5)

DEC R2 (R2 = 4)
producer: MOV counter, RI1 (counter = 6)
consumer: MOV counter, R2 (counter = 4)

The value of count will be 4, where the correct result should be 5. The value of count
could also be 6 if producer executes MOV counter, R1 atthe end. The reason for this
state is that we allowed both processes to manipulate the variable counter concurrently.
A situation like this, where several processes access and manipulate the same data
concurrently and the outcome of the manipulation depends on the particular order in
which the access takes place, is called a race condition. To guard against such race
conditions, we require synchronization of processes.

Concurrent transactions in a bank or in an airline reservation (or travel agent) office
are a couple of other examples that illustrates the critical section problem. We show

96

interleaving of two bank transactions, a deposit and a withdrawal. Here are the details of
the transactions:

= Current balance = Rs. 50,000
= Check deposited = Rs. 10,000
= ATM withdrawn = Rs. 5,000

The codes for deposit and withdrawal are shown in Figure 18.1.

Balance W
DEPOSIT WITHDRAWAL
MOV A, Balance MOV B, Balance
ADD A, Deposited SUB B, Withdrawn
MOV Balance, A MOV Balance, B

Figure 18.1 Bank transactions—deposit and withdrawal

Here is what may happen if the two transactions are allowed to execute concurrently,
1.e., the transactions are allowed to interleave. Note that in this case the final balance will
be Rs. 45,000, i.e., a loss of Rs. 5,000. If MOV Balance, A executes at the end, the
result will be a gain of Rs. 5,000. In both cases, the final result is wrong.

Check Deposit:

MOV A, Balancc // A =50,000

ADD A, Deposited /I A = 60,000
ATM Withdrawal;

MOV B, Balance // B =150,000

SUB B, Withdrawn // B =45,000
Check Deposit:

MOV Balance, A // Balance = 60,000
ATM Withdrawal:

MOV Balance, B // Balance = 45,000

The Critical Section Problem

Critical Section: A piece of code in a cooperating process in which the process may
updates shared data (variable, file, database, etc.).

Critical Section Problem: Serialize executions of critical sections in cooperating
processes.

When a process executes code that manipulates shared data (or resource), we say that
the process is in its critical scction (for that shared data). The execution of critical
sections must be mutually exclusive: at any time, only one process is allowed to execute
in its critical section (even with multiple processors). So each process must first request
permission to enter its critical section. The section of code implementing this request is

97

called the entry section, The remaining code is the remainder section. The critical
section problem is to design a protocol that the processes can use so that their action will
not depend on the order in which their execution is interleaved (possibly on many
processors).

There can be three kinds of solution to the critical section problem:

= Software based solutions
= Hardware based solutions
= Operating system based solution

We discuss the software solutions first. Regardless of the type of solution, the structure of
the solution should be as follows. The Entry and Exist sections comprise solution for the
problem.

do
{
| Entry section |
critical section
Exit section |
remainder section
} while (1)

Solution to the Critical Section Problem
A solution to the critical section problem must satisfy the following three requirements:

1. Mutual Exclusion
If process P;is executing in its critical section, then no other process can be executing
in their critical section.

2. Progress

If no process is executing in its critical section and some processes wish to enter their
critical sections, then only those processes that are not executing in their remainder
section can participate in the decision on which will enter its critical section next, and
this sclection cannot be postponed indefinitely.

3. Bounded Waiting

There exists a bound on the number of times that other processes are allowed to enter
their critical sections after a process has made a request to enter its critical section and
before that request is granted.

Assumptions
While formulating a solution, we must keep the following assumptions in mind:
» Assume that each process executes at a nonzero speed
= No assumption can be made regarding the relative speeds of the N processes.

98

2-Process Solutions to the Critical Section Problem

In this section algorithms that are applicable to two processes will be discussed. The
processcs arc Po and P;. When presenting P;, we usc Pj to denotc the other process. An
assumption is that the basic machine language instructions such as load and store are
executed atomically, that is an operation that completes in its entirety without
interruption.

Algorithm 1

The first approach is to let the processes share a common integer variable turn initialized
to 0 or 1. If turn == i, then process P; is allowed to execute in its critical section. The
structure of the process P;is as tollows:

do
{
|while(turn!=j);|
critical section
|turn:j;
remainder section
} while (1)

This solution ensures mutual exclusion, that is only one process at a time can be in its
critical scction. Howcver it docs not satisfy the progress requirement, since it requires
strict alternation of processes in the execution of the critical section. For example, if
turn==0 and P; is ready to enter its critical section, P; cannot do so even though Py may
be in its remainder section. The bounded wait condition is satisfied though, because there
is an alternation between the turns of the two processes.

Algorithm 2

In algorithm two, the variable turn is replaced with an array boolean £lag(2]whose
elements are initialized to false. If flag is true for a process that indicates that the process
is ready to enter its critical section. The structure of process P; is shown:

99

do

flagl[il=true;
while (flag[j]):

critical section

| flag[il=false; |

remainder section
} while (1)

In this algorithm P; sets f1ag [1]= true signaling that it is ready to enter its critical
section. Then P; checks to verify that process P;is not also ready to enter its critical
section. If P; were ready, then P; would wait until P; had indicated that it no longer needed
to be in the critical section (that is until £1ag[j]=false). At this point P; would enter
the critical section. On exiting the critical section, P;would set flag[i]=false
allowing the other process to enter its critical section. In this solution, the mutual
exclusion requirement is satisfied. Unfortunately the progress condition is not met;
consider the following execution sequence:

To.Posets f1lag[0]= true
T.Pisets flag[l]= true

Now both the processes are looping forever in their respective while statements.

100

Operating Systems [CS-604] Lecture No. 20

Operating Systems
Lecture No. 20

Reading Material
= Chapter 7 of the textbook
= Lecture 20 on Virtual TV

Summary
= 2-Process Critical Section Problem (continued)
= n-Process Critical Section Problem
= The Bakery Algorithm

2-Process Critical Section Problem (continued)

We discussed two solutions for the 2-process critical section problem in lecture 19 but
both were not acceptable because they did not satisfy the progress condition. Here is a
good solution for the critical section problem that satisfies all three requirements of a
good solution.

Algorithm 3
The processes share two variables:

boolean flag[2]:
ATE tiiETY;

The boolean array of *flag’ is initialized to false, whereas ‘turn’ maybe () or 1. The
structure of the process is as follows:

do
{

flag[i]=true;
turn=7j;
while(flag[j] && turn==3j);

critical section

| flagl[i]=false; |

remainder section

} while (1)

To enter its critical section, P; sets flag[i] to true, and sets ‘turn’ to j, asserting that if the
other process wishes to enter its critical section, it may do so. If both try to enter at the

101

same time, they will attempt to set ‘turn’ to 1 and j. However, only one of these
assignments will last, the other will occur but be overwritten instantly. Hence, the
eventual value of “‘turn’ will decide which process gets to enter its critical section.

To prove mutual exclusion, note that P; enters its critical section only if either
flag[j]=talse or turn=i. Also, if both processes were executing in their critical sections at
the same time, then flag[0]= = flag[1]= = true. These two observations suggest that Py and
P, could not have found both conditions in the while statement true at the same time,
since the value of ‘turn’ can either be 0 or 1. Hence only one process say Pomust have
successfully exited the while statement. Hence mutual exclusion is preserved.

To prove bounded wait and progress requirements, we note that a process P; can be
prevented the critical section only if it is stuck in the while loop with the condition
flag[j]= =true and turn=j. If P;is not ready to enter the critical section, then flag[j]=flase
and P; can enter its critical section. If P;has set flag[j]=true and is also executing its while
statement then either turn=i or turn=j. If turn=i then P; enters its critical section, otherwise
P; However, whenever a process finishes executing in its critical section, lets assume P;,
it rescts flag[j] to falsc allowing P;to enter its critical scction. If Pjrescts flag[j]=truc, then
it must also set ‘turn’ to 1, and since P; does not change the value of ‘turn’ while
executing in its while statement, P; will enter its critical section (progress) after at most
one entry by P; (bounded waiting).

N-Process Critical Section Problem

In this section we extend the critical section problem of two processes to include n
processes. Consider a system of n processes (P, P P,.1). Each process has a
segment of code called a critical section in which the process may be changing common
variables, updating a table, writing a file and so on. The important feature of the system
in that, when one process enters its critical section, no other process is allowed to execute
in its critical section. Thus the execution of critical sections by the processes is mutually
exclusive in time. The critical section problem is to design a protocol to serialize
executions of critical sections. Each process must request permission to enter its critical
section. Many solutions are available in the literature to solve the N-process critical
section problem. We will discuss a simple and elegant solution, known as the Bakery
algorithm.

The Bakery Algorithm

The bakery algorithm is due to Leslie Lamport and is based on a scheduling algorithm
commonly used in bakeries, ice-cream stores, and other locations where order must be
made out of chaos. On entering the store, each customer receives a number. The customer
with the lowest number is served next. Before entering its critical section, process
receives a ticket number. Holder of the smallest ticket number enters its critical section.
Unfortunately, the bakery algorithm cannot guarantee that two processes (customers) will
not receive the same number. In the casc of a tic, the proccess with the lowest ID is served
first. If processes P1 and Pj receive the same number, if 1 <j, then Pi is served first; else
Pj 1s served first. The ticket numbering scheme always generates numbers in the
increasing order of enumeration; i.e., 1,2,3,4, 5 ...

102

Since process names are unique and totally ordered, our algorithm is completely
deterministic. The common data structures are:

boolean choosing [n];
int number [n];

Initially these data structures are initialized to false and 0, respectively. The following
notation is defined for convenience:

= (ticket #, process id #)
= (a,b) <(c,d)if a<c or if a= =c and b<d.
® max(ay . a,)is a number, k, such that k>= a; for i=0,...n-1

The structure of process P;used in the bakery algorithm is as follows:

do

{
choosing[i] = true;
number[i] = max (number[0], number[1l],..number[n-1])+1;
choosing[i] = false;

for (3=0; Jj<n; Jj++) {
while (choosing[j])
while ((number[]]!=

}

0) && ((number[jl,]) < (number[i],i)));

| Critical section |

number [1]=0;

| Remainder section |

} while (1) ;

To prove that the bakery algorithm is correct, we need to first show that if P;is in its
critical section and Py has already chosen its number k!=0, then ((number [i],1) <
(numberfk].k)). Consider P;in its critical section and Py trying to enter its critical section.
When process Py executes the second while statement for j= = 1 it finds that,

* number[i] =0
= (number[i],i) < (number[k].k)

Thus it keeps looping in the while statement until P; leaves the P; critical section. Hence
mutual exclusion is preserved. For progress and bounded wait we observe that the
processes enter their critical section on a first come first serve basis.

Following is an example of how the Bakery algorithm works. In the first table, we
show that there are five processes, PO through P4. P1’s number is 0 because it is not
interested in getting into its critical section at this time. All other processes are interested
in entering their critical sections and have chosen non-zero numbers by using the max ()
function in their entry sections.

103

The following table shows the status of all the processcs as they exccute the ‘for’

Process Number
PO 3
P1 0
P2 7
P3 4
P4 8

loops in their entry sections. The gray cells show processes waiting in the second while
loops in their entry sections. The table shows that PO never waits for any process and is,

therefore, the first process to enter its critical section, while all other processes wait in

their second while loops for j = = 0, indicating that they are waiting for PO to get out of

its critical scction and then they would make progress (i.c., they will get out the while

loop, increment j by one, and continue their execution).
You can make the following observations by following the Bakery algorithm closely
with the help of this table:

P1 not interested to get into its critical scction = number[1] is 0
P2, P3, and P4 wait for PO
PO gets into its CS, get out, and sets its number to 0
P3 get into its CS and P2 and P4 wait for it to get out of its CS
P2 gets into its CS and P4 waits for it to get out
P4 gets into its CS
Scquence of cxecution of processes: <P0, P3, P2, P4>

PO P2 P3 P4
(3,0)<(3,0) (3,0)<(7,2) (3,0)< (4,3) (3,0) < (8.,4)
Number[1] =0 | Number[1] =0 | Number[1]=0 | Number[1] =0
(7,2) <(3,0) (7,2) <(7,2) (7,2) < (4,3) (7,2) <(8,4)
(4,3) < (3,0) (4,3) <(7,2) 4,3)<4,3) (4,3)<(8.4)
(8,4) <(3,0) (8,4) <(7,2) (8,4) <(4,3) (8,4) <(8,4)

104

Operating Systems [CS-604] Lecture No. 21

Operating Systems
Lecture No. 21

Reading Material
= Chapter 7 of the textbook
= Lecture 21 on Virtual TV

Summary

= Hardware solutions

Hardware Solutions for the Critical Section Problem
In this section, we discuss some simple hardware (CPU) instructions that can be used to
provide synchronization between processes and arc available on many systems.

The critical section problem can be solved simply in a uniprocessor environment if
we could forbid interrupts to occur while a shared variable is being modified. In this
manner, we could be sure that the current sequence of instructions would be run, so no
unexpected modifications could be made to the shared variable.

Unfortunatcly this solution is not fcasible in a multiproccssing cnvironment, as
disabling interrupts can be time consuming as the message is passed to all processors.
This message passing delays entry into each critical section, and system efficiency
decreases.

Normally, access to a memory location excludes other accesses to that same location.
Designers have proposed machine instructions that perform two operations atomically
(indivisibly) on thc samc memory location (c.g., rcading and writing). The cxccution of
such an instruction is also mutually exclusive (even on Multiprocessors). They can be
used to provide mutual exclusion but other mechanisms are needed to satisfy the other
two requirements of a good solution to the critical section problem.

We can use these special instructions to solve the critical section problem. These
instructions are TestAndSet (also known as TestAndSetLock; TSL) and Swap. The
semantics of the TestAndSet instruction are as follows:

boolean TestAndSet (Boolean &target)
{

boolean rv=target;

target=true;

return rv;

The semantics simply say that the instruction saves the current value of ‘target’, set it to
true, and returns the saved value.

The important characteristic is that this instruction is executed atomically. Thus if two
TestAndSet instructions are executed simultaneously, they will be executed sequentially
in somc arbitrary order.

105

If the machine supports TestAndSet instruction, then we can implement mutual
exclusion by declaring a Boolean variable lock, initialized to false. The structure of
process P; becomes:

do
{
|while (TestAndSet (lock)) ; |
Critical section
|lock=false; |
Remainder section
} while(1);

The above TSL-based solution is no good because even though mutual exclusion and
progress are satistied, bounded waiting is not.

The semantics of the Swap instruction, anothcr atomic instruction, arc, as cxpccted, as
follows

boolean Swap (boolean &a, boolean &b)
{

boolean temp=a;

a=b;

b=temp;
}

If the machine supports the Swap instruction, mutual exclusion can be implemented
as follows. A global Boolean variable lock is declared and is initialized to false. In
addition each process also has a local Boolean variable key. The structure of process P;
is:

do
{

key=true;
while (key == true)
Swap (lock, key) ;

Critical section

| lock=false;

Remainder section

} while (1) ;

Just like the TSL-based solution shown in this section, the above Swap-based solution is
not good because even though mutual exclusion and progress are satisfied, bounded
waiting is not. In the next lecture, we will discuss a good solution for the critical section
problem by using the hardware instructions.

106

Operating Systems [CS-604] Lecture No. 22

Operating Systems
Lecture No. 22

Reading Material
= Chapter 7 of the textbook
= Lecture 22 on Virtual TV

Summary
= Hardware based solutions
= Semaphores
= Semaphore based solutions for the critical section problem

Hardware Solutions

In lecture 21 we started discussing the hardware solutions for the critical section problem.
We discussed two possible solutions but realized that whereas both solutions satisfied the
mutual exclusion and bounded waiting conditions, neither satisfied the progress
condition. We now describe a solution that satisfies all three requirements of a solution to
the critical scction problem.

Algorithm 3
In this algorithm, we combine the ideas of the first two algorithms. The common data
structures used by a cooperating process are:

boolean waiting[n];
boolean lock;

The structure of process P; is:

do
{

waiting[i] = true;

key = true;

while (waitingl[i] && key)
key = TestAndSet (lock);

waiting[i] = false;

Critical section

j = (i+1) % n;

while ((j'=1) && !waiting[3])
= (3+1)% n;

if (J == 1)
lock = false;

else
waiting[j] = false;

Remainder section

} while (1) ;

107

These data structures are initialized to false. To prove that the mutual exclusion
requirement is met, we note that process P; can enter its critical section only if either
waiting[1]= = false or key == false. The value of key can become false only if
TestAndSet is executed. The first process to execute the TestAndSet instruction will find
key= =false; all others must wait. The variable waiting[i] can only become false if
another process leaves its critical section; only one waiting[1] is set to false, maintaining
the mutual exclusion requirement.

To prove the progress requirement is met, we note that the arguments presented for
mutual exclusion also apply here, since a process exiting the critical section either sets
lock to false or sets waiting[j] to false. Both allow a process that is waiting to enter its
critical section to proceed.

To prove that the bounded waiting requirement is met, we note that, when a process
leaves its critical section, it scans the array waiting in the cyclic ordering (i+1, i+2, ..., n-
1,0, 1, ...,1-1). It designatcs the first proccess it sces that is in its cntry scction with
waiting[j]=true as the next one to enter its critical section. Any process waiting to do so
will enter its critical section within n-1 turns.

Semaphores

Hardware solutions to synchronization problems are not easy to generalize to more
complex problems. To overcome this difficulty we can use a synchronization tool called a
semaphore. A semaphore S is an integer variable that, apart from initialization is
accessible only through two standard atomic operations: wait and signal. These
operations were originally termed P (for wait) and V (for signal). The classical definitions
of wait and signal are:

wait (S) {
while (S<=0)
;// no op
S==;

signal (S) {
S++;

}

Modifications to the intcger valuc of the scmaphore in the wait and signal opcrations
must be executed indivisibly. That is, when one process is updating the value of a
semaphore, other processes cannot simultaneously modify that same semaphore value. In
addition, in the case of the wait(S), the testing of the integer value of S (S<=0) and its
possible modification (S--) must also be executed without interruption.

We can use semaphores to deal with the n-process critical section problem. The n
proccsscs sharc a semaphore, mutex (standing for mutual exclusion) initialized to 1. Each
process P;is organized as follows:

108

do

|wait(mutex); |

Critical section

| signal (mutex) ; |

Remainder section

} while (1) ;

As was the case with the hardware-based solutions, this is not a good solution
because even though it satisfies mutual exclusion and progress, it does not satisfy
bounded wait.

In a uni-processor environment, to ensure atomic execution, while executing wait and
signal, interrupts can be disabled. In case of a multi-processor environment, to ensure
atomic execution is one can lock the data bus, or use a soft solution such as the Bakery
algorithm.

The main disadvantage of the semaphore discussed in the previous section is that it
requires busy waiting. While a process is in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This continual
looping is clearly a problem in a real multiprogramming system, where a single CPU is
shared among many processes. Busy waiting wastes CPLU ¢yeles that some other process
may be able to use productively. This type of semaphore is also called a spinlock
(because the process spins while waiting for the lock). Spinlocks are useful in
multiprocessor systems. The advantage of a spinlock is that no context switch is required
when a process must wait on a lock, and a context switch may take considerable time.
This is, spinlocks are useful when they are expected to be held for short times. The
detinition of semaphore should be modified to eliminate busy waiting. We will discuss
the modified definition of semaphore in the next lecture.

109

Operating Systems [CS-604] Lecture No.23

Operating Systems
Lecture No. 23

Reading Material
= Chapter 7 of the textbook
= Lecture 23 on Virtual TV

Summary
= Busy waiting
* New definition of semaphore
* Process synchronization
= Problems with the use of semaphore: deadlock, starvation, and violation of mutual
cxclusion

Semaphores

The main disadvantage of the semaphore discussed in the previous section is that they all
require busy waiting. While a process is in its critical section, any other process that tries
to enter its critical section must loop continuously in the entry code. This continual
looping is clearly a problem in a real multiprogramming system, where a single CPU is
shared among many processes. Busy waiting wastes CPU cycles that some other process
may be able to use productively. This type of semaphore is also called a spinlock
(because the process spins while waiting for the lock). Spinlocks are useful in
multiprocessor systems. The advantage of a spinlock is that no context switch is required
when a process must wait on a lock, and a context switch may take considerable time.
This, when locks are expected to be held for short times, spinlocks are useful.

To overcome the need for busy waiting, we can modify the definition of semaphore
and the wait and signal operations on it. When a process executes the wait operation and
finds that the semaphore value is not positive, it must wait. However, rather than busy
waiting, the process can block itself. The block operation places a process into a waiting
queue associated with the semaphore, and the state of the process is switched to the
waiting state. Then, control is transferred to the CPU scheduler, which selects another
proccss to cxccutc.

A process that is blocked, waiting on a semaphore S, should be restarted when some
other process executes a signal operation. The process is restarted by a wakeup operation,
which changes the process from the waiting state to the ready state. The process is then
placed in the ready queue. (The CPU may or may not be switched from the running
proccss to the newly ready process, depending on the CPU scheduling algorithm.)

Such an implementation of a semaphore is as follows:

typedef struct {

int value;

struct process *L;
} semaphore;

110

Each semaphore has an integer value and a list of processes. When a process must
wait on a semaphore; it is added to the list of processes. A signal operation removes one
process from the list of the waiting processes and awakens that process. The wait
operation can be defined as:

volid wait (semaphore S) {
S.value--;
if(S.value < 0) {
add this process to S.L;
block();

The signal semaphore operation can be defined as

void signal wait (semaphore S) {
S.value+t+;
if(S.value <= 0) {
remove a process P from S.L;
wakeup (P) ;

The block operation suspends the process that invokes it. The wakeup(P) operation
resumes the execution of a blocked process P. These two operations are provided by the
operating system as basic system calls. The negative value of S.value indicates the
number of processes waiting for the semaphore. A pointer in the PCB needed to maintain
a queue of processes waiting for a semaphore. As mentioned before, the busy-waiting
version is better when critical sections are small and queue-waiting version is better for
long critical sections (when waiting is for longer periods of time).

Process Synchronization

You can use semaphores to synchronize cooperating processes. Consider, for example,
that you want to execute statement B in Pj only after statement A has been executed in Pi.
You can solve this problem by using a semaphore S initialized to 0 and structuring the
codes for Pi and P;j as follows:

Pi Pj
A wait (S);
signal (S) ; B;

Pj will not be able to execute statement B until Pi has executed its statements A and
signal(S).

Here is another synchronization problem that can be solved easily using semaphores.
We want to ensure that statement S1 in P1 executes only after statement S2 in P2 has

111

executed, and statement S2 in P2 should execute only after statement S3 in P3 has
executed. One possible semaphore-based solution uses two semaphores, A and B. Here is
the solution.

semaphore A=0, B=0;

Pl P2 P3

wait (A) ; wait (B); S3;

S1; S2; signal (B) ;
signal (A) ;

Problems with Semaphores
Here are some key points about the use of semaphores:

» Semaphores provide a powerful tool for enforcing mutual exclusion and
coordinating processes.

* The wail(S) and signal(S) operations are scattered among several processes.
Hence, it is difficult to understand their effects.

= Usagc of scmaphorcs must be correct in all the processcs.

* One bad (or malicious) process can fail the entire system of cooperating
processes.

Incorrect use of semaphores can cause serious problems. We now discuss a few of
these problems.

Deadlocks and Starvation

A set of processes are said to be in a deadlock state if every process is waiting for an
event that can be caused only by another process in the set. Here are a couple of examples
of deadlocks in our daily lives.

= Traffic deadlocks
* One-way bridge-crossing

Starvation is infinite blocking caused due to unavailability of resources. Here is an
example of a deadlock.

PO Pl

wait (S); wait (Q);
wait (Q) ; wait (S) ;
signal (S); signal (Q) ;
signal (Q) ; signal (S);

PO and P1 need to get two semaphores, S and Q, before executing their critical sections.
The following code structures can cause a deadlock involving PO and P1. In this example,
PO grabs semaphore S and P1 obtains semaphore Q. Then, PO waits for Q and P1 waits
for S. PO waits for P1 to execute signal(Q) and P1 waits for PO to execute signal(S).

112

Neither process will execute the respective instruction—a typical deadlock situation. The
following diagram shows the situation pictorially.

signal(S);

P1

signal (Q)

Here is an example of starvation. The code structures are self-explanatory.

PO Pl
wait (S); wait (3);
wait (S); signal(S) ;

Violation of Mutual Exclusion

In the following example, the principle of mutual exclusion is violated. Again, the code
structures are self-explanatory. 1f you have any questions about them, please see the
lecture video.

PO Pl
signal (S) ; wait (S);
wait (S); signal (S) ;

These problems are due to programming errors because of the tandem use of the wait
and signal operations. The solution to these problems is higher-level language constructs
such as critical region (region statement) and monitor. We discuss these constructs and
their use to solve the critical section and synchronization problems in the next lecture.

113

Operating Systems [CS5-604] Lecture No.24

Operating Systems
Lecture No. 24

Reading Material
= Chapter 7 of the textbook
= Lecture 24 on Virtual TV

Summary
= Counting semaphores
* C(Classical synchronization problems
* Bounded buffer problem
= Readers and writers problem
= Dining philosophers problem

Semaphores
There are two kinds of semaphores:

* Counting semaphore whose integer value can range over an unrestricted integer
domain.

= Binary semaphore whose integer value cannot be > 1: can be simpler to
implement.

Let S be a counting semaphore. To implement it in terms of binary semaphores we
need the following data structures:

binary-semaphore S1, 32;
int C;

Initially S1=1, S2=0, and the value of integer C is set to the initial value of the counting
semaphore S. The wait operation on the counting semaphore S can be implemented as
follows:

wait (S1);

C—=7

1f(C < 0) {
signal (S1);
walit (S2);

}

signal (S1);

The signal operation on the counting semaphore S can be implemented as follows:

wait (S1);
C++;
if(C <= 0)
signal(S2);
else
signal (S1);

114

Classic Problems of Synchronization

The three classic problems of synchronization are:
* Bounded-Buffer Problem
= Rcadcrs and Writcrs Problem
= Dining Philosophers Problem

Bounded Buffer Problem

The bounded-buffer problem, which was introduced in a previous lecture, is commonly
used to illustrate the power of synchronization primitives. The solution presented in this
section assumes that the pool consists of n buffers, each capable of holding one item.

Empty Pool

SNESI =)
=
e

Full Pool

The mutex semaphore provides mutual exclusion for accesses to the buffer pool and
1s initialized to the value 1. The empty and full semaphores count the number of empty
and full buffers, respectively. The semaphore empty is initialized to the value n; the
semaphore full is initialized to the value 0.

The code for the producer is as follows:

do {

produce an item in nextp

wait (empty);
wailt (mutex) ;

add nextp to buffer
signal (mutex) ;

signal (full);
} while(1);

And that for the consumer is as follows:

115

do {
wait (full);
wait (mutex) ;

remove an item from
buffer to nextc

signal (mutex);
signal (empty) ;

consume the item in nextc

) while(1);

Note the symmetry between the producer and the consumer process. This code can be
interpreted as the producer producing full buffers for the consumer, or as the consumer
producing empty buffers for the producer.

Readers Writers Problem

A data object (such as a file or a record) is to be shared among several concurrent
processes. Some of these processes, called readers, may want only to read the content of
the shared object whereas others, called writers, may want to update (that is to read and
write) the shared object. Obviously, if two readers access the data simultaneously, no
adversc cffects will result. Howcever, if a writer and some other process (whether a writer
or some readers) access the shared object simultaneously, chaos may ensue.

To ensure these difficulties do not arise, we require that the writers have exclusive
access to the shared object. This synchronization problem is referred to the readers-
writers problem. Since it was originally stated, it has been used to test nearly every new
synchronization primitive. The readers-writers problem has several variations, all
involving priorities. The simplest one, referred to as the first readers-writers problem,
requires that no reader will be kept waiting unless a writer has already obtained
permission to use the shared object. In other words, no reader should wait for other
readers to finish simply because a writer is waiting. The second readers-writers
problem requires that once a writer is ready, that writer performs its write as soon as

116

possible. In other words, if a writer is waiting to access the object, no new readers may
start reading.

A solution to either problem may result in starvation. In the first case, writers may
starve; in the second case, readers may starve. For this reason, other variants of the
problem have been proposed. In this section, we discuss a solution to the first readers-
writers problem. In the solution to the first readers-writers problem, processes share the
following data structures.

semaphore mutex, wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0. The
semaphore wrt is common to both the reader and writer processes. The mutex semaphore
1s used to ensure mutual exclusion when the reader processes update the readcount
variable. The readcount variable keeps track of how many processes are currently reading
the object. The wrt semaphore is used to ensure mutual exclusion for writers or a writer
and readers. This semaphore is also used by the first and last readers to block entry of a
writer into its critical section and to allow open access to the wrt semaphore, respectively.
It is not used by readers who enter or exit, while at least one reader is in its critical
sections.

The codes for reader and writer processes are shown below:

wait (mutex) ;
readcount++;
if (readcount == 1)
walt (wrt) ;
signal (mutex) ;

reading is performed

walit (mutex) ;
readcount--;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;

wait (wrt);

writing is performed

signal (wrt) ;

Note that, if a writer is in the critical section and n readers are waiting, then one reader is
queued on wrt, and n-1 readers are queued on mutex. Also observe that when a writer
executes signal(wrt) we may resume the execution of either the waiting readers or a
singlc waiting writcr; the sclection is made by the CPU scheduler.

117

Dining Philesophers Problem
Consider five philosophers who spend their lives thinking and eating, as shown in the
following diagram.

Think for a while —— = Pick up chopsticks

Put down chopsticks = Eat for a while

The philosophers share a common circular table surrounded by five chairs, each
belonging to one philosopher. In the center of the table is a bowl of rice, and the table is
laid with five single chopsticks.

When a philosopher thinks, she does not interact with her colleagues. From time to
time, a philosopher gets hungry and tries to pick up the two chopsticks that are closest to
her (the chopsticks that are between her and her left and right neighbors). A philosopher
may pick up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
1s already in the hand of her neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When she is
finished eating, she puts down both of her chopsticks and starts thinking again.

The dining philosophers problem is considered to be a classic synchronization
problem because it is an example of a large class of concurrency control problems. It is a
simple representation of the need to allocate several resources among several processes in
a deadlock and starvation free manner.

One simple solution is to represent each chopstick by a semaphore. A philosopher
tires to grab the chopstick by executing a wait operation on that semaphore; she releases
her chopsticks by executing the signal operation on the appropriate semaphores. Thus the
shared data are:

| semaphore chopstick[5]; |

All the chopsticks arc initialized to 1. The structurc of philosopher 1 is as follows:

118

do {
wait (chopstick[i];
wait (chopstick [(i+1)%5]);
eat
signal (chopstick[i])
signal (chopstick[(i+1)%5]);

think

}

Although this solution guarantees that no two neighbors are eating simultaneously, it
nevertheless must be rejected because it has the possibility of creating a deadlock.

Suppose that all five gets hungry at the same time and pick up their left chopsticks as
shown in the following figure. In this case, all chopsticks are locked and none of the
philosophers can successfully lock her right chopstick. As a result, we have a circular
waiting (i.e., every philosopher waits for his right chopstick that is currently being locked
by his right neighbor), and hence a deadlock occurs.

There are several possible good solutions of the problem. We will discuss these in the
next lecture.

119

Operating Systems [CS-604] Lecture No. 25

Operating Systems
Lecture No. 25

Reading Material
= Chapter 7 of the textbook
= Lecture 25 on Virtual TV

Summary
= Dining philosophers problem
= High-level synchronization constructs
» Critical region
= Monitor

Dining Philosophers Problem
Several possibilities that remedy the deadlock situation discussed in the last lecture are
listed. Each results in a good solution for the problem.

= Allow at most four philosophers to be sitting simultaneously at the table.

= Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this she must pick them up in a critical section)

= Use an asymmetric solution; that is, an odd philosopher picks up first her left
chopstick, whereas an even philosopher picks up her right chopstick and then her
left chopstick.

Removing the possibility of deadlock does not ensure that starvation does not occur.
Imagine that two philosophers are fast thinkers and fast eaters. They think fast and get
hungry fast. Then, they sit down in opposite chairs as shown below. Because they are so
fast, it is possible that they can lock their chopsticks and eat. After finish eating and
before their neighbors can lock the chopsticks and eat, they come back again and lock the
chopsticks and eat. In this case, the other three philosophers, even though they have been
sitting for a long time, they have no chance to eat. This is a starvation. Note that it is not a
deadlock because there is no circular waiting, and everyone has a chance to eat!

120

High-level Synchronization Constructs

We discussed the problems of deadlock, starvation, and violation of mutual exclusion
caused by the poor use of semaphores in lecture 23. We now discuss some high-level
synchronization constructs that help solve some of these problems.

Critical regions

Although semaphores provide a convenient and effective mechanism for process
synchronization, their incorrect usage can still result in timing errors that are difficult to
detect, since these errors occur only if some particular execution takes place, and these
sequences do not always happen.

To illustrate how, let us review the solution to the critical section problem using
semaphores. All processes share a semaphore variable mutex, which is initialized to 1.
Each process must execute wait(mutex) before entering the critical section and
signal(mutex) afterward. If this sequence is not observed, two processes may be in their
critical sections simultaneously.

To deal with the type of errors we outlined above and in lecture 23, a number of high-
level constructs have been introduced. In this section we describe one fundamental high-
level synchronization construct—the eritical region. We assume that a process consists
of some local data, and a sequential program that can operate on the data. Only the
sequential program code that is encapsulated within the same process can access the local
data. That is, one process cannot directly access the local data of another process.
Processes can however share global data.

The critical region high-level synchronization construct requires that a variable v of
type T, which is to be shared among many processes, be declared as:

| v:shared T;

The variable v can be accessed only inside a region statement of the following form:

|region v when B do S; |

This construct means that, while statement S is being executed, no other process can
access the variable v. The expression B is a Boolean expression that governs the access to
the critical region. When a process tries to enter the critical-section region, the Boolean
expression B is evaluated. If the expression is true, statement S is executed. If it is false,
the process relinquishes the mutual exclusion and is delayed until B becomes true and no
other process is in the region associated with v. Thus if the two statements,

region v when (true) S1;
region v when (true) S2;

are executed concurrently in distinct sequential processes, the result will be equivalent to
the sequential execution “S1 followed by S2” or “S2 followed by S1”".

The critical region construct can be effectively used to solve several certain general
synchronization problems. We now show use of the critical region construct to solve the
bounded buffer problem. Here is the declaration of buffer:

121

struct buffer {
item pool[n];
int count, in, out;

} 7

The producer process inserts a new item (stored in nextp) into the shared buffer by
executing

region buffer when (count < n) {

pool[in] = nextp;
in = (in+1)%n;
count++;

}

The consumer process removes an item from the shared buffer and puts it in nextc by
executing

region buffer when(count > 0) {
nextc = pool[out];
out = (out+1l)%n;
count--;

Monitors

Another high-level synchronization construct is the monitor type. A monitor is
characterized by local data and a set of programmer-defined operators that can be used to
access this data; local data be accessed only through these operators. The representation
of a monitor type consists of declarations of variables whose values define the state of an
instance of the type, as well as the bodies of procedures or functions that implement
operations on the type. Normal scoping rules apply to parameters of a function and to its
local variables. The syntax of the monitor is as follows:

monitor monitor name

{

shared variable declarations

procedure body P1(..) { ...}
procedure body P1(..) { ...}
procedure body PI1(..) { ...}

{

initialization code

}

}

The monitor construct ensures that only one process at a time can be active within the
monitor. Consequently, the programmer does not need to code this synchronization

122

construct explicitly. While one process is active within a monitor, other processes trying
to access a monitor wait outside the monitor. The following diagram shows the big
picture of a monitor.

shared data

operahions

Initializalson
code

However, the monitor construct as defined so far is not powerful enough to model
some synchronization schemes. For this purpose we need to define additional
synchronization mechanisms. These mechanisms are provided by the condition
construct (also called condition variable). A programmer who needs to write her own
tailor made synchronization scheme can define one or more variables of type condition.

| condition x,y; |

The only operations that can be invoked on a condition variable are wait and signal. The
operation

|x.wait(); |

means that the process invoking this operation is suspended until another process
invokes.

| x.signal () ;

The x.signal() operation resumes exactly one suspended process. If no process is
suspended, then the signal operation has no effect; that is, the state of x is as though the
operation were never executed. This is unlike the signal operation on a semaphore, where
a signal operation always increments value of the semaphore by one. Monitors with
condition variables can solve more synchronization problems that monitors alone. Still
only one process can be active within a monitor but many processes may be waiting for a
condition variable within a monitor, as shown in the following diagram.

123

In the next lecture we will discuss a monitor-based solution for the dining philosophers
problem.

124

Operating Systems [CS-604] Lecture No. 26

Operating Systems
Lecture No. 26

Reading Material
= Chapters 7 and 8 of the textbook
= Lecture 26 on Virtual TV

Summary
= Monitor-based solution of the dining philosophers problem
= The deadlock problem
= Deadlock characterization
= Deadlock handling

Deadlock prevention

Monitor-based Solution for the Dining Philosophers Problem

Let us illustrate these concepts by presenting a deadlock free solution to the dining
philosophers problem. Recall that a philosopher is allowed to pick up her chopsticks only
if both of them are available. To code this solution we need to distinguish among three
states in which a philosopher may be. For this purpose we introduce the following data
structure:

|enum {thinking, hungry, eating} statel[5];

Philosopher i can set the variable state [1i]=eating only if her two neighbors are not
eating: (state[(i+4)%5] !=eating) and (state[(i+1)%5] !=eating).

We also need to declare five condition variables, one for each philosopher as follows.
A philosopher uses her condition variable to delay herself when she is hungry, but is
unable to obtain the chopsticks she needs.

| condition self[b5]; |

We are now in a position to describe our monitor-based solution to the dining-
philosophers problem. The distribution of the chopsticks is controlled by the monitor dp;
whose definition is as follows:

125

monitor dp

{
enum {thinking, hungry,eating} state[5];
condition self[5];

void pickup(int i)
{
state[i]=hungry;
test (1) ;
if (state[i] != eating)
self[i].wait();
1
void putdown (int 1)
{
state[i]=thinking;
test ((i+4)%5);
test ((i+1)%5);
}
void test (int 1)
{
if ((state[(i+4)3%5]!=eating) &&
(state[i]==hungry) && statel (i+1)%5]!=eating)) {
state[i]=eating;
self[i] .signal();
}
}
void 1nit ()
{
for(int i=0;i<5;i++)
state[i]=thinking;
}

Each philosopher before starting to eat must invoke the pickup operation. This
operation ensures that the philosopher gets to eat if none of its neighbors are eating. This
may result in the suspension of the philosophcer process. After the successful complction
of the operation, the philosopher may eat. Following this, the philosopher invokes the
putdown operation and may start to think. The putdown operation checks if a neighbor
(right or left—in this order) of the leaving philosopher wants to eat. If a neighboring
philosopher is hungry and neither of that philosopher’s neighbors is eating, then the
lcaving philosopher signals it so that she could cat. In order to usc this solution, a
philosopher 1 must invoke the operations pickup and putdown in the following sequence:

126

dp.pickup (i) ;

eat

dp.putdown (1) ;

It is easy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is possible for
a philosopher to starve to death. You should think about this problem and satisfy
yourself.

The Deadlock Problem

A set of blocked processes each holding a resource and waiting to acquire a resource held
by another process in the set. Here’s an example:

= System has 2 tape drives.
= P1 and P2 each hold one tape drive and each needs another one.

Another deadlock situation can occur when the poor use of semaphores, as discussed in
lecture 23. We reproduce that situation here. Assume that two processes, PO and P1, need
to access two scmaphorces, A and B, before exccuting their critical scctions. Semaphorces
are initialized to | each. The following code snippets show how a situation can arise
where PO holds semaphore A, P1 holds semaphore B, and both wait for the other
semaphore—a typical deadlock situation as shown in the figure that follows the code.

PO P1
wait (A); wait(B);
wait (B); wait(A);

signal (A) ;

PO P1

signal (B) ;

In the first solution for the dining philosophers problem, if all philosophers become
hungry at the same time, they will pick up the chopsticks on their right and wait for
getting the chopsticks on their left. This causes a deadlock.

Yet another example of a deadlock situation can occur on a one-way bridge, as shown
below. Traffic flows only in one direction, and each section of a bridge can be viewed as
a rcsourcc. If a decadlock occurs, it can be resolved if one car backs up (precmpt resources
and rollback). Several cars may have to be backed up if a deadlock occurs. Starvation is
possible.

127

